What's a good imputation to predict with missing values?

Objectives

• Supervised learning with missing values poses different challenges compared to inference with missing values or imputation.

$\min_{f:(\mathbb{R}\cup\{\mathrm{NA}\})^d\mapsto\mathbb{R}} \mathcal{R}(f) := \mathbb{E}\left[\left(Y - f(\widetilde{X})\right)^2\right]$

- In practice, Impute-then-Regress procedures are widely used, but there is very little theoretical grounding supporting their use.
- We thus ask the following questions:
- » Can Impute-then-Regress procedures be Bayes optimal?
- » How should we choose the imputation function?
- » What if the data is Missing Not At Random (MNAR)?

Bayes optimality

Theorem

Let g_{Φ}^{\star} be the minimizer of the risk on the data imputed by Φ . Assume that $\Phi \in \mathcal{F}^I_{\infty}$, and that the response Y satisfies $Y = f^{\star}(X) + \epsilon$. Then, for all missing data mechanisms and almost all imputation functions, $g_{\Phi}^{\star} \circ \Phi$ is Bayes optimal.

In other words:

• For almost all imputation functions $\Phi\in\mathcal{F}^I_\infty$, a universally consistent algorithm trained on the imputed data $\Phi(X)$ is Bayes consistent.

 \Rightarrow Asymptotically, it is not necessary to impute well to predict well.

Predictive modeling calls for different imputation strategies.

Sketch of the proof

- **1** All data points with a missing data pattern m are mapped to a manifold $\mathcal{M}^{(m)}$ of dimension |obs(m)| (**Preimage Theorem**).
- ² The missing data patterns of imputed data points can almost surely be de-identified (**Thom transversality Theorem**).
- (3) Given 2), we can build prediction functions, independent of m, that are Bayes optimal for all missing data patterns.

Marine Le Morvan, Julie Josse, Erwan Scornet, Gaël Varoquaux

Complete data

Continuous decompositions

Can we find **continuous** Impute-then-Regress decompositions of the Bayes predictor?

Q1 - What is the risk of chaining oracles: $f^* \odot \Phi^{CI}$? where Φ^{CI} is the oracle imputation $\mathbb{E}[X_{mis}|X_{obs}]$. The excess risk is small whenever there is no direction in which both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high.

Q2 - Can we find a <u>continuous</u> function g s.t. $g \odot \Phi^{CI}$ is Bayes optimal?

Suppose that the probability of observing all variables is strictly positive. Then there is **no continuous prediction function** q such that $q \odot \Phi^{CI}$ is Bayes optimal, unless it is f^* .

Q3 - Keeping the regression function fixed as f^* , can we find a <u>continuous</u> imputation function Φ so that $f^{\star} \odot \Phi$ is Bayes optimal?

Imputed data (manifolds)

But not always...

Experimental results

Data simulations

- Gaussian data: "high" and "low' covariance settings.
- $Y = f^{\star}(X) + \epsilon$
- 50% missing values with 2 mechanisms: ✓ MCAR
- ✓ Gaussian self-masking (MNAR)
- n=100,000 and d=50.

Impute-then-Regress benchmark

Zoom on NeuMiss [1] + MLP: an architecture for missing values

- learning with missing values.

missing values are replaced by zeros.

[1] Marine Le Morvan et al. "NeuMiss networks: differentiable programming for supervised learning with missing values.". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 5980–5990

Drop in R2 compared to Bayes predictor

• Can be seen as an implicit and jointly learned Impute-then-Regress architecture for

• Theoretically grounded: differentiable approximation of the conditional expectation.