What's a good imputation to predict with missing values?
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Objectives

e Supervised learning with missing values poses different
challenges compared to inference with missing values or imputation.

min R(f) =E [(Y — f(Y))QI

f:(RU{NA})H—TR

e [n practice, Impute-then-Regress procedures are widely used,
but there is very little theoretical grounding supporting their
use.

e We thus ask the following questions:
» Can Impute-then-Regress procedures be Bayes optimal?

» How should we choose the imputation function?
» What if the data is Missing Not At Random (MNAR)?

Bayes optimality

Let g7 be the minimizer of the risk on the data imputed by ®. Assume
that ® € ., and that the response Y satisfies Y = f*(X)+e¢. Then,
for all missing data mechanisms and almost all imputation functions,

g3y o @ is Bayes optimal.

In other words:

e For almost all imputation functions ® € F. , a universally consistent
algorithm trained on the imputed data ¢(X) is Bayes consistent.

—> Asymptotically, it is not necessary to impute well to predict well.

Predictive modeling calls for different imputation strategies.

Sketch of the proof

®All data points with a missing data pattern m are mapped to a
manifold M ™ of dimension |obs(m)| (Preimage Theorem).

® [ he missing data patterns of imputed data points can almost surely
be de-identified (Thom transversality Theorem).

©Given 2), we can build prediction functions, independent of m, that
are Bayes optimal for all missing data patterns.

Complete data Imputed data (manifolds)

Continuous decompositions

N b ,
Can we find continuous Impute-then-Regress decompositions
of the Bayes predictor?

Q1 - What is the risk of chaining oracles: f*® ®¢!?
where ®“! is the oracle imputation [E [X,,;s| Xoss]. The excess
risk is small whenever there is no direction in which both 1) the
curvature of f* is high and 2) the variance of the missing data
given the observed one is high.

May be a good imputation
would still provide an
easier learning problem?

Why bother!
From now on I use constant
imputations!

Q2 - Can we find a continuous function g s.t. ¢ ® ®¢/

is Bayes optimal?

Suppose that the probability of observing all variables is strictly
positive. Then there is no continuous prediction function
g such that g ® ®“! is Bayes optimal, unless it is f*.

Q3 - Keeping the regression function fixed as f*, can
we find a continuous imputation function ¢ so that
f*® ¢ is Bayes optimal?

Sometimes yes! But not always...
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Experimental results

Data simulations
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Zoom on NeuMiss [1] + MLP: an architecture for missing values

e Can be seen as an implicit and jointly learned Impute-then-Regress architecture for
learning with missing values.

e [ heoretically grounded: differentiable approximation of the conditional expectation.

Input data: The NeuMiss module: Conventional
missing values are Fixed width of size d. Residual connections.  feedforward NN
replaced by zeros. Shared weights. New non-linearity: ©m.
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