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Objectives

• Supervised learning with missing values poses different
challenges compared to inference with missing values or imputation.

min
f :(R∪{NA})d 7→R

R(f ) := E
[(

Y − f (X̃ )
)2]

• In practice, Impute-then-Regress procedures are widely used,
but there is very little theoretical grounding supporting their
use.

• We thus ask the following questions:
» Can Impute-then-Regress procedures be Bayes optimal?
» How should we choose the imputation function?
» What if the data is Missing Not At Random (MNAR)?

Bayes optimality

Theorem
Let g⋆

Φ be the minimizer of the risk on the data imputed by Φ. Assume
that Φ ∈ F I

∞, and that the response Y satisfies Y = f ⋆(X)+ϵ. Then,
for all missing data mechanisms and almost all imputation functions,
g⋆

Φ ◦ Φ is Bayes optimal.

In other words:
• For almost all imputation functions Φ ∈ F I

∞, a universally consistent
algorithm trained on the imputed data Φ(X̃) is Bayes consistent.

⇒⇒⇒ Asymptotically, it is not necessary to impute well to predict well.

Predictive modeling calls for different imputation strategies.

Sketch of the proof

1 All data points with a missing data pattern m are mapped to a
manifold M(m) of dimension |obs(m)| (Preimage Theorem).

2 The missing data patterns of imputed data points can almost surely
be de-identified (Thom transversality Theorem).

3 Given 2), we can build prediction functions, independent of m, that
are Bayes optimal for all missing data patterns.

Complete data Imputed data (manifolds)

Continuous decompositions

Why bother!

From now on I use constant 
imputations!

 
May be a good imputation 
would still provide an 
easier learning problem?

Can we find continuous Impute-then-Regress decompositions
of the Bayes predictor?

Q1 - What is the risk of chaining oracles: f ⋆ ⊙ ΦCI?
where ΦCI is the oracle imputation E [Xmis|Xobs]. The excess
risk is small whenever there is no direction in which both 1) the
curvature of f ⋆ is high and 2) the variance of the missing data
given the observed one is high.

Q2 - Can we find a continuous function g s.t. g ⊙ ΦCI

is Bayes optimal?
Suppose that the probability of observing all variables is strictly
positive. Then there is no continuous prediction function
g such that g ⊙ ΦCI is Bayes optimal, unless it is f ⋆.

Q3 - Keeping the regression function fixed as f ⋆, can
we find a continuous imputation function Φ so that
f ⋆ ⊙ Φ is Bayes optimal?

Sometimes yes! But not always...

Experimental results

Data simulations

• Gaussian data: "high" and "low’ covariance
settings.

• Y = f ⋆(X) + ϵ

• 50% missing values with 2 mechanisms:
✓MCAR
✓Gaussian self-masking (MNAR)

• n=100,000 and d=50.
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Impute-then-Regress benchmark
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Zoom on NeuMiss [1] + MLP: an architecture for missing values
• Can be seen as an implicit and jointly learned Impute-then-Regress architecture for

learning with missing values.
• Theoretically grounded: differentiable approximation of the conditional expectation.
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