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Objectives

Supervised learning with missing values:
• both in the training set and at prediction time in the
test set,
• under possibly non-ignorable missingness (Missing Not
At Random).

State-of-the-art and Challenges

•A rich literature on statistical inference but few works on
supervised learning with missing values.
•Most general methods for imputation are only valid if the
missingness is ignorable.

•Samples are represented by varying subsets of input
variables⇒⇒⇒ learn compensation mechanisms.
•The total number of possible missing data patterns is
exponential in the dimension (2d)⇒⇒⇒ keep the sample
complexity polynomial.

Approach

1 Derive the analytical expression of the optimal
predictor under various missing data mechanisms.

2 Propose a theoretically grounded neural network
architecture (NeuMiss) designed to approximate these
optimal predictors.
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Figure 1:Comparison of NeuMiss with wide and deep neural networks
with ReLU activation, fed with the data imputed by 0 and the mask.

Notations and Assumptions

Random variables Ex. of realizations
•X ∈ Rd: complete data x = (1.1, 2.3, 3.1, 8, 5.27)
• X̃ ∈ {R ∪ {NA}}d: incomplete data x̃ = (1.1, NA,−3.1, 8, NA)
•M ∈ {0, 1}d: mask. m = (0, 1, 0, 0, 1)
• obs(M): indices of the observed entries xobs(m) = (1.1, 3.1, 8)

Assumptions:
Linear model: Y = β?0 +

d∑
j=1
β?jXj + ε

Gaussian data: X ∼ N (µ,Σ)

Optimal (Bayes) predictor:
f ? ∈ argmin

f :(R∪{NA})d 7→R
E
[(
Y − f (X̃)

)2]

The optimal predictors under various missing data
mechanisms

Ignorable missing data mechanisms:
•Missing Completely At Random (MCAR): P (M = m|X) = P (M = m)
•Missing At Random (MAR): P (M = m|X) = P (M = m|Xobs(m))

M(C)AR Bayes predictor

f ?(Xobs,M) = β?0 + 〈β?obs, Xobs〉+ 〈β?mis, µmis + Σmis,obs(Σobs)−1(Xobs−µobs)〉

Non-ignorable missing data mechansim:
Gaussian self-masking (MNAR) Bayes predictor

f ?(Xobs,M) = β?0 + 〈β?obs, Xobs〉 + 〈β?mis, (Id + DmisΣ−1
mis|obs)

−1

× (µ̃mis + DmisΣ−1
mis|obs(µmis + Σmis,obs (Σobs)−1 (Xobs − µobs)))〉

Intuition:
The optimal predictors are linear per pattern

The slopes of the obs. variables depend on M to compensate for the missing-
ness of other correlated variables: f ?(Xobs,M) = β0(M) + ∑

j∈obs(M)
βj(M)Xj
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Approximating the Bayes predictors

Main difficulty: approx. of Σ−1
obs, for any obs, i.e., any missing data pattern!
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Figure 2:NeuMiss architecture for a depth of 4.

NeuMann iterations: approximate
Σ−1
obs by unrolling the order-` truncation

of a NeuMann series:
S

(`)
obs(m) = (Id− Σobs(m))S

(`−1)
obs(m) + Id.

A new type of non-linearity: the mul-
tiplication entrywise by the mask.

Theoretically-grounded architec-
ture: In M(C)AR and under a sim-
plifying assumption in Gaussian self-
masking, NeuMiss with a depth ` + 1
can exactly compute the order-` ap-
proximation of the Bayes predictor.

Experimental results

Simulated data
•Gaussian covariates
•Response is a linear model
• 50% missing values

Methods
•EM: Expectation Maximization.
•MICE [1] + LR: Conditional imputer
followed by linear regression.
•MLP [2]: feedforward neural network
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Figure 3:MCAR
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Figure 4:Gaussian self-masking

•Neumiss performances come close to the optimal performances.
•Robustness to the missing data mechanism.
•Suited for medium-sized datasets thanks to weights sharing across mdp.
.


