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Objectives

Supervised learning with missing values:

e both in the training set and at prediction time in the
test set,

e under possibly non-ignorable missingness (Missing Not
At Random).

State-of-the-art and Challenges

e A rich literature on statistical inference but few works on
supervised learning with missing values.

e Most general methods for imputation are only valid if the
missingness is ignorable.

e Samples are represented by varying subsets of input
variables = learn compensation mechanisms.

e The total number of possible missing data patterns is
exponential in the dimension (2¢) = keep the sample
complexity polynomial.

Approach

® Derive the analytical expression of the optimal
predictor under various missing data mechanisms.

@ Propose a theoretically grounded neural network
architecture (NeuMiss) designed to approximate these
optimal predictors.
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Figure 1:Comparison of NeuMiss with wide and deep neural networks

with RelLU activation, fed with the data imputed by 0 and the mask.

Notations and Assumptions

Random variables Ex. of realizations
o X € R% complete data r=(1.1,2.3,3.1,8,5.27)
e X ¢ {RU{NA: incomplete data T = (1.1,NA, —3.1,8,NA)
e M <€ {0,1}% mask. m = (0,1,0,0,1)

e obs(M): indices of the observed entries Tobs(m) = (1.1,3.1, 8)
Assumptions:

; Optimal (Bayes) predictor:
Linear model: Y = 5; +j§:jlﬁ]*Xj + € e argmin E [(Y B f(Xv))zl
Gaussian data: X ~ N (p, ) f:(RU{NA}) DR

The optimal predictors under various missing data
mechanisms

Ignorable missing data mechanisms:

e Missing Completely At Random (MCAR): P(M = m|X) = P(M = m)
e Missing At Random (MAR): P(M = m|X) = P(M = m|Xps(m))

M(C)AR Bayes predictor

f*<Xob:37 M) — 66 T <6§b37 Xobs> - </6;1@37 Hmis =+ Z"777,2'3,0173(Z:obs)_1()(obs — ,uobs>>

Non-ignorable missing data mechansim:

Gaussian self-masking (MNAR) Bayes predictor

f*(XObSa M) — 66( - <5§b57 X0b5> - <6;(m'5> ([d - Dmisz_l )_1

mis|obs

N _ —1
X (,umzs T Dmiszmis‘gbs(,umis T Z‘frm's,obs (Zobs) (Xobs o MObS))»
Intuition:

The slopes of the obs. variables depend on M to compensate for the missing-

ness of other correlated variables:  f*( X5, M) = Bo(M) + Z( )ﬁj(M)Xj
j€obs(M
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Approximating the Bayes predictors
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Main difficulty: approx. of >, for any obs, i.e., any missing data pattern!
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Neumann iterations

Figure 2:NeuMiss architecture for a depth of 4.

NeuMann iterations: approximate

> ' by unrolling the order-¢ truncation

of a NeuMann series:

Theoretically-grounded architec-
ture: In M(C)AR and under a sim-
0 1) plifying assumption in Gaussian self-
S()bs(m) = (Id — Zobs(m))Sabs(m) +1d. masking, NeuMiss with a depth 7 4 1
can exactly compute the order-{ ap-

A new type of non-linearity: the mul- _ _ _
proximation of the Bayes predictor.

tiplication entrywise by the mask.

Experimental results

Simulated data Methods

e Gaussian covariates e EM: Expectation Maximization.

® Response is a linear model e MICE [1] 4+ LR: Conditional imputer
® 50% missing values followed by linear regression.

e MLP |2]: feedforward neural network
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e Neumiss performances come close to the optimal performances.
e Robustness to the missing data mechanism.

e Suited for medium-sized datasets thanks to weights sharing across mdp.



