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2 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

3 CMAP, UMR7641, Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
4 Mila, McGill University, Montréal, Canada
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Incomplete data is ubiquitous in many fields
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Traumabase clinical health records.

Sources of missingness:
Survey nonresponse.
Sensor failure.
Changing data gathering
procedure.
Database join.
...

Missing data is frequent in
economics, social, political or
health sciences.
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The classical literature on missing values

Since the 70s, an abundant literature on missing data has flourished.

Missing data mechanisms are usually divided into 3 categories:
I MCAR (Missing Completely at Random)
I MAR (Missing at Random)
I MNAR (Missing Non At Random)

The literature has been mainly focused on inference and imputation tasks:
I Likelihood based methods under MAR.
I Multiple imputation under MAR.
I Inverse probability weighting under MAR.

But very few works have addressed supervised learning with missing values,
whatever the missing data mechanism.
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Intuition: linear regression with missing values

effect of X2 lost effect of X2 
accounted for by 

X1 

Y = β?1 X1 + β?2 X2 + β?0

cor(X1,X2) = 0.5.

If X2 is missing, the coefficient of X1
should compensate for the
missingness of X2.

The difficulty of supervised learning with missing values is to handle up to 2d

missing data patterns (i.e. 2d possible inputs of varying length).
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The literature on supervised learning with missing values

Some recent works:
I Josse et al. 2019: Imputation by a constant is Bayes consistent, but the

function to be learned can be overly complex (hyp: MAR).

I Le Morvan et al. 2020: In the simple case of linear regression, a single layer
MLP is Bayes consistent, but provided 2d hidden units.

I Many adaptations of neural networks to missing values, often involving
imputing by 0 and concatenating with the mask, but no underlying theory.

What architecture should we use to handle missing values? How complex
should it be? What would be a good architecture design?

Marine Le Morvan NeuMiss networks Montpellier - December 2020 5 / 25



The NeuMiss network

For the case of linear regression under various missing data mechanisms:

We propose a theoretically grounded neural network architecture,
designed to approximate the Bayes predictor.

The complexity of the architecture stays small thanks to the sharing of
parameters across missing data patterns.

Its originality and strength comes from the use of a new type of
non-linearity: the multiplication by the missingness indicator.

It is robust to the missing data mechanism, including difficult MNAR
settings such as self-masking.
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Notations and assumptions

Random variables Ex. of realizations

X ∈ Rd : complete data (unavailable) x = (1.1, 2.3, 3.1, 8, 5.27)

X̃ ∈ {R ∪ {NA}}d : incomplete data (available) x̃ = (1.1, NA,−3.1, 8, NA)

M ∈ {0, 1}d : mask. m = (0, 1, 0, 0, 1)

obs(M) (resp. mis(M)) are the indices of the
observed (resp. missing) entries.

Notation abuse: Aobs(m),obs(m) = Aobs(m)

xobs(m) = (1.1, 3.1, 8),
xmis(m) = (2.3, 5.27)

Assumptions:

linear model + Gaussian data:

Y = β?
0 +

d∑
j=1

β?
j Xj + ε,

X ∼ N (µ,Σ)

Bayes predictor:

f ? ∈ argmin
f :(R∪{NA})d 7→R

E
[(

Y − f ( X̃ )
)2]
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The Bayes predictor under M(C)AR

MCAR: For all m ∈ {0, 1}d , P(M = m|X ) = P(M = m).
MAR: For all m ∈ {0, 1}d , P(M = m|X ) = P(M = m|Xobs(m)).

Proposition (M(C)AR Bayes predictor)
Under the linear model and Gaussian data assumptions, and a MCAR or
MAR missing data mechanism, the Bayes predictor f ? takes the form:

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉

General idea of the proof:

f ?(Xobs ,M) = E[Y |Xobs(M),M]
= β?0 + 〈β?obs ,Xobs〉+ 〈β?mis ,E[Xmis |Xobs ,M]〉
= β?0 + 〈β?obs ,Xobs〉+ 〈β?mis ,E[Xmis |Xobs ]〉
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The Bayes predictor under Gaussian self-masking (MNAR)
Gaussian self-masking (MNAR): The missing data mechanism is
self-masked with P(M|X ) =

∏d
k=1 P(Mk |Xk) and ∀k ∈ J1, dK ,

P(Mk = 1|Xk) = Kk exp
(
−1

2
(Xk − µ̃k)2

σ̃2
k

)
with 0 < Kk < 1.

0.2

0.4

Xk

P(Mk = 1|Xk)
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The Bayes predictor under Gaussian self-masking (MNAR)
Gaussian self-masking (MNAR): The missing data mechanism is
self-masked with P(M|X ) =

∏d
k=1 P(Mk |Xk) and ∀k ∈ J1, dK ,

P(Mk = 1|Xk) = Kk exp
(
−1

2
(Xk − µ̃k)2

σ̃2
k

)
with 0 < Kk < 1.

Proposition (Gaussian self-masking (MNAR) Bayes predictor)
Under the linear model and Gaussian data assumptions, and a Gaussian
self-masking (MNAR) missing data mechanism, the Bayes predictor f ? takes
the form:

f ?(Xobs ,M) = β?0 + 〈β?obs ,Xobs〉+ 〈β?mis , (Id + DmisΣ−1
mis|obs)−1

× (µ̃mis + DmisΣ−1
mis|obs(µmis + Σmis,obs (Σobs)−1 (Xobs − µobs)))〉

where Σmis|obs = Σmis,mis − Σmis,obsΣ−1
obsΣobs,mis and D = diag(σ̃2

1 , . . . , σ̃
2
d ).
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How to approximate the Bayes predictors?
M(C)AR Bayes predictor:

f ?(Xobs ,M) = β?0 + 〈β?obs ,Xobs〉+ 〈β?mis , µmis + Σmis,obs(Σobs)−1(Xobs − µobs)〉

nb of parameters

Expectation-
Maximisation MLPNeuMiss

networks

O(d2) parameters

No robustness to the
missing data mech.
High computational
complexity!!!
(untractable when d
reaches a few dozens)

O(d2) parameters

Sharing parameters across
missing data patterns
O(d2) computational complexity.

O(2d ) parameters

Largely
over-parametrized.
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Differentiable approximations of the inverse covariances

We propose to approximate (Σobs(m))−1, for any m, by an order-`
approximation S(`)

obs(m), defined recursively as:

S(`)
obs(m) = (Idobs(m) −

1
L Σobs(m))S(`−1)

obs(m) + 1
L Id .

where L ∈ R+ is greater than the largest eigenvalue of Σobs(m).

The iterates converge linearly to (Σobs(m))−1.

Note: the iterates can be expressed as a series, corresponding to a Neumann
series if S(0) = Id and ` =∞, i.e,

(Σobs(m))−1 = 1
L

∞∑
k=0

(Idobs(m) −
1
L Σobs(m))k
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Differentiable approximations of the inverse covariances

Define the order-` approximation of the Bayes predictor in M(C)AR settings

f ?` (Xobs ,M) = 〈β?obs ,Xobs〉+ 〈β?mis , µmis + Σmis,obsS(`)
obs(m)(Xobs − µobs)〉.

Proposition (Risk of the order-` approximation)
Suppose that the spectral radius of Σ is strictly smaller than one. Then under the
linear model and Gaussian data assumptions, and a MCAR or MAR missing data
mechanism, for all ` ≥ 1,

E
[(

f ?` (Xobs ,M)− f ?(Xobs ,M)
)2
]
≤ (1− ν)2`‖β?‖2

2
ν

E
[∥∥Id − S(0)

obs(M)Σobs(M)
∥∥2

2

]
where ν is the smallest eigenvalue of Σ.
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NeuMiss network architecture
M(C)AR Bayes predictor:

f ?` (Xobs ,M) ≈ β?0 + 〈β?obs ,Xobs〉+ 〈β?mis , µmis + Σmis,obsS(`)
obs(Xobs − µobs)〉

Approximation of (Σobs)−1: S(`)
obs(m) = (Idobs(m) − 1

L Σobs(m))S(`−1)
obs(m) + 1

L Id .

NeuMiss network architecture (illustrated with a depth of 4):

x � m̄ −

µ� m̄

S(0) W (1)
Neu

(Id − Σobs) + W (2)
Neu

(Id − Σobs) + W (3)
Mix

(Σmis,obs) +

µ�m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumann iterations Non-linearity

Figure: m̄ = 1−m. Each weight matrix W (k)
Neu corresponds to a simple transformation of

the covariance matrix indicated in blue.
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NeuMiss network and Gaussian self-masking (MNAR)

M(C)AR Bayes predictor:

f ?(Xobs ,M) = β?
0 + 〈β?

obs ,Xobs〉+ 〈β?
mis , µmis + Σmis,obs(Σobs)−1(Xobs − µobs)〉

Suppose that DmisΣ−1
mis|obs ≈ D̂mis where D̂ is a diagonal matrix. Then the

Gaussian self-masking Bayes predicor is:

f ?(Xobs ,M) ≈ β?
0 +

〈
β?

obs ,Xobs〉+ 〈β?
mis , (Idmis + D̂mis)−1(µ̃mis + D̂misµmis)

+ (Idmis + D̂mis)−1D̂misΣmis,obs (Σobs)−1 (Xobs − µobs)
〉

The self-masking Bayes predictor can be well approximated by adjusting the
values learned for the params µ and Wmix if DmisΣ−1

mis|obs are close to diagonal.
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Link with the feedforward network

NeuMiss depth-1 layer
H�m : Rd 7→ Rd

x � m̄ −

µ� m̄

Wmix
∈ Rd×d

�m̄

Feedforward layer (d hidden units)
HReLU : Rd × {0, 1} 7→ Rd

(
x � m̄

m

)
W ∈ R2d×d

b ∈ Rd

ReLU

Proposition (equivalence MLP - depth-1 NeuMiss network)
Denote by hReLU

k and h�m
k the output of the k th hidden units of each layer. Then

there exists a configuration of the weights of HReLU such that

∀k, ∀(m, xobs(m)), hReLU
k (xobs ,m) = hk

�m(xobs ,m) + ck , ck ∈ R
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The �m nonlinearity is crucial to the performance
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Figure: Performance as a function of capacity across architectures — Data are
generated under a linear model with Gaussian covariates in a MCAR setting (50%
missing values, n = 105, d = 20).
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Comparison of performances with competitors
Data

I linear model
I Gaussian data
I SNR = 10

Missing data mechanisms (50% missing values)
I MCAR
I MAR
I Gaussian self-masking (MNAR)
I Probit self-msking (MNAR)

Methods
I EM: Expectation-Maximisation.
I Mice + LR: Conditional imputation followed by linear regression.
I MLP: 1 hidden layer with varied nb of hidden units (between d and 100d),

ReLU nonlinearties, data imputed by 0 concatenated with the mask as input,
ADAM, adaptative learning rate.

I NeuMiss The NeuMiss architecture, depth varied between 0 and 10, SGD,
adaptative learning rate.
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Comparison of performances with competitors
MCAR

−0.10 −0.05 0.00

EM
MICE + LR

MLP
NeuMiss

−0.05 0.00

−0.10 −0.05 0.00

EM
MICE + LR
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NeuMiss
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R2 - Bayes rate

EM
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NeuMiss

−0.15 −0.10

d=10
n=20000 n=100000

d=20

d=50

Figure: Predictive performances in various scenarios — varying missing-value
mechanisms, number of samples n, and number of features d . All experiments are
repeated 20 times. For self-masking settings, the x-axis is in log scale, to accommodate
the large difference between methods.
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Comparison of performances with competitors
Gaussian self-masking (MNAR)

-0.1 -0.01

EM
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NeuMiss

-0.1 -0.01

-0.1 -0.02

EM
MICE + LR

MLP
NeuMiss
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R2 - Bayes rate
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NeuMiss

-0.1 -0.05

d=10
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Probit self-masking (MNAR)
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Figure: Predictive performances in various scenarios — varying missing-value
mechanisms, number of samples n, and number of features d . All experiments are
repeated 20 times. For self-masking settings, the x-xaxis is in log scale, to accommodate
the large difference between methods.
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Take away

x � m̄ −

µ� m̄

S(0) W (1)
Neu

(Id − Σobs) + W (2)
Neu

(Id − Σobs) + W (3)
Mix

(Σmis,obs) +

µ�m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumann iterations Non-linearity

Theoretically-grounded architecture,
with a new type of non-linearity: the � non-linearity.
Robustness to the missing data mechanism.
Suited for medium-sized datasets thanks to weight sharing across missing
data patterns.

Thank you for your attention!
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