NeuMiss networks: differentiable programming for supervised learning with missing values

Marine Le Morvan^{1,2}

Julie Josse^{1,3} Thomas Moreau¹
Erwan Scornet³ Gaël Varoquaux^{1,4}

Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
 CMAP, UMR7641, Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
 Mila, McGill University, Montréal, Canada

Montpellier - December 2020

Marine Le Morvan NeuMiss networks Montpellier - December 2020

Incomplete data is ubiquitous in many fields

Traumabase clinical health records.

Sources of missingness:

- Survey nonresponse.
- Sensor failure.
- Changing data gathering procedure.
- Database join.
- ...

Missing data is frequent in economics, social, political or health sciences.

The classical literature on missing values

Since the 70s, an abundant literature on missing data has flourished.

- Missing data mechanisms are usually divided into 3 categories:
 - MCAR (Missing Completely at Random)
 - MAR (Missing at Random)
 - MNAR (Missing Non At Random)
- The literature has been mainly focused on inference and imputation tasks:
 - Likelihood based methods under MAR.
 - Multiple imputation under MAR.
 - Inverse probability weighting under MAR.

But very few works have addressed **supervised learning** with missing values, whatever the missing data mechanism.

Intuition: linear regression with missing values

$$Y = \beta_1^* X_1 + \beta_2^* X_2 + \beta_0^*$$
$$cor(X_1, X_2) = 0.5.$$

If X_2 is missing, the coefficient of X_1 should compensate for the missingness of X_2 .

The difficulty of supervised learning with missing values is to handle **up to** 2^d missing data patterns (i.e. 2^d possible inputs of varying length).

The literature on supervised learning with missing values

- Some recent works:
 - ▶ Josse et al. 2019: Imputation by a constant is Bayes consistent, but the function to be learned can be overly complex (hyp: MAR).
 - ▶ Le Morvan et al. 2020: In the simple case of linear regression, a single layer MLP is Bayes consistent, but provided 2^d hidden units.
 - Many adaptations of neural networks to missing values, often involving imputing by 0 and concatenating with the mask, but no underlying theory.

What architecture should we use to handle missing values? How complex should it be? What would be a good architecture design?

The NeuMiss network

For the case of linear regression under various missing data mechanisms:

- We propose a **theoretically grounded neural network architecture**, designed to approximate the Bayes predictor.
- The complexity of the architecture stays small thanks to the sharing of parameters across missing data patterns.
- Its originality and strength comes from the use of a new type of non-linearity: the multiplication by the missingness indicator.
- It is robust to the missing data mechanism, including difficult MNAR settings such as self-masking.

Content

Optimal predictors in the presence of missing values

NeuMiss networks: learning by approximating the Bayes predictor

3 Empirical results

Marine Le Morvan NeuMiss networks Montpellier - December 2020

Outline

1 Optimal predictors in the presence of missing values

NeuMiss networks: learning by approximating the Bayes predictor

3 Empirical results

Marine Le Morvan NeuMiss networks Montpellier - December 2020

Notations and assumptions

Random variables

- $X \in \mathbb{R}^d$: complete data (unavailable)
- $\widetilde{X} \in \{\mathbb{R} \cup \{\text{NA}\}\}^d$: incomplete data (available)
- $M \in \{0,1\}^d$: mask.

obs(M) (resp. mis(M)) are the indices of the observed (resp. missing) entries.

Notation abuse: $A_{obs(m),obs(m)} = A_{obs(m)}$

Assumptions:

linear model + Gaussian data:

$$Y = \beta_0^* + \sum_{j=1}^d \beta_j^* X_j + \epsilon,$$
$$X \sim \mathcal{N}(\mu, \Sigma)$$

Ex. of realizations

$$x = (1.1, 2.3, 3.1, 8, 5.27)$$

$$\tilde{x} = (1.1, NA, -3.1, 8, NA)$$

$$m=(0,1,0,0,1)$$

$$x_{obs(m)} = (1.1, 3.1, 8),$$

 $x_{mis(m)} = (2.3, 5.27)$

Bayes predictor:

$$f^* \in \underset{f:(\mathbb{R} \cup \{\mathtt{NA}\})^d \mapsto \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\left(Y - f(\frac{\widetilde{\mathsf{X}}}{\mathsf{X}})\right)^2\right]$$

The Bayes predictor under M(C)AR

- MCAR: For all $m \in \{0,1\}^d$, P(M = m|X) = P(M = m).
- MAR: For all $m \in \{0,1\}^d$, $P(M = m|X) = P(M = m|X_{obs(m)})$.

Proposition (M(C)AR Bayes predictor)

Under the linear model and Gaussian data assumptions, and a MCAR or MAR missing data mechanism, the Bayes predictor f^* takes the form:

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

General idea of the proof:

$$\begin{split} f^{\star}(X_{obs}, M) &= \mathbb{E}[Y|X_{obs(M)}, M] \\ &= \beta_{0}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mathbb{E}[X_{mis}|X_{obs}, M] \rangle \\ &= \beta_{0}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mathbb{E}[X_{mis}|X_{obs}] \rangle \end{split}$$

The Bayes predictor under Gaussian self-masking (MNAR)

• Gaussian self-masking (MNAR): The missing data mechanism is self-masked with $P(M|X) = \prod_{k=1}^{d} P(M_k|X_k)$ and $\forall k \in [1, d]$,

$$P(M_k=1|X_k)=K_k \exp\left(-rac{1}{2}rac{(X_k-\widetilde{\mu}_k)^2}{\widetilde{\sigma}_k^2}
ight) \qquad ext{with } 0< K_k < 1.$$

The Bayes predictor under Gaussian self-masking (MNAR)

• Gaussian self-masking (MNAR): The missing data mechanism is self-masked with $P(M|X) = \prod_{k=1}^{d} P(M_k|X_k)$ and $\forall k \in [1, d]$,

$$P(M_k = 1 | X_k) = K_k \exp\left(-rac{1}{2}rac{(X_k - \widetilde{\mu}_k)^2}{\widetilde{\sigma}_k^2}
ight) \qquad ext{with } 0 < K_k < 1.$$

Proposition (Gaussian self-masking (MNAR) Bayes predictor)

Under the linear model and Gaussian data assumptions, and a Gaussian self-masking (MNAR) missing data mechanism, the Bayes predictor f^* takes the form:

$$f^{\star}(X_{obs}, M) = \beta_{0}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, (Id + D_{mis} \Sigma_{mis|obs}^{-1})^{-1}$$

$$\times (\tilde{\mu}_{mis} + D_{mis} \Sigma_{mis|obs}^{-1} (\mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}))) \rangle$$

where $\Sigma_{\textit{mis}|\textit{obs}} = \Sigma_{\textit{mis},\textit{mis}} - \Sigma_{\textit{mis},\textit{obs}} \Sigma_{\textit{obs}}^{-1} \Sigma_{\textit{obs},\textit{mis}}$ and $D = \operatorname{diag}(\widetilde{\sigma}_1^2,\ldots,\widetilde{\sigma}_d^2)$.

Outline

1 Optimal predictors in the presence of missing values

2 NeuMiss networks: learning by approximating the Bayes predictor

3 Empirical results

M(C)AR Bayes predictor:

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

nb of parameters

M(C)AR Bayes predictor:

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

nb of parameters

Expectation-Maximisation

 $O(d^2)$ parameters

No robustness to the missing data mech.

High computational complexity!!! (untractable when d

reaches a few dozens)

Marine Le Morvan NeuMiss networks Montpellier - December 2020

M(C)AR Bayes predictor:

$$f^{\star}(X_{obs},M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

nb of parameters

Expectation-Maximisation

MLP

 $O(d^2)$ parameters

 $O(2^d)$ parameters

No robustness to the missing data mech.

Largely over-parametrized.

High computational complexity!!!

(untractable when d reaches a few dozens)

M(C)AR Bayes predictor:

$$f^{\star}(X_{obs},M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs}(\Sigma_{obs})^{-1}(X_{obs} - \mu_{obs}) \rangle$$

nb of parameters

Expectation-Maximisation NeuMiss networks

(MLP)

 $O(d^2)$ parameters

 $O(d^2)$ parameters

 $O(2^d)$ parameters

No robustness to the missing data mech.

Sharing parameters across missing data patterns

Largely over-parametrized.

High computational complexity!!!

(untractable when d reaches a few dozens)

 $O(d^2)$ computational complexity.

Differentiable approximations of the inverse covariances

• We propose to approximate $(\Sigma_{obs(m)})^{-1}$, for any m, by an order- ℓ approximation $S_{obs(m)}^{(\ell)}$, defined recursively as:

$$S_{obs(m)}^{(\ell)} = (Id_{obs(m)} - \frac{1}{L}\Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + \frac{1}{L}Id.$$

where $L \in \mathbb{R}^+$ is greater than the largest eigenvalue of $\Sigma_{obs(m)}$.

- The iterates converge linearly to $(\Sigma_{obs(m)})^{-1}$.
- Note: the iterates can be expressed as a series, corresponding to a Neumann series if $S^{(0)} = Id$ and $\ell = \infty$, i.e,

$$(\Sigma_{obs(m)})^{-1} = \frac{1}{L} \sum_{k=0}^{\infty} (Id_{obs(m)} - \frac{1}{L} \Sigma_{obs(m)})^k$$

Differentiable approximations of the inverse covariances

Define the order- ℓ approximation of the Bayes predictor in M(C)AR settings

$$f_{\ell}^{\star}(X_{obs},M) = \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$$

Proposition (Risk of the order- ℓ approximation)

Suppose that the spectral radius of Σ is strictly smaller than one. Then under the linear model and Gaussian data assumptions, and a MCAR or MAR missing data mechanism, for all $\ell \geq 1$,

$$\mathbb{E}\bigg[\big(f_{\ell}^{\star}(X_{obs},M) - f^{\star}(X_{obs},M)\big)^{2}\bigg] \leq \frac{(1-\nu)^{2\ell}\|\beta^{\star}\|_{2}^{2}}{\nu}\mathbb{E}\bigg[\big\|\text{Id} - S_{obs(M)}^{(0)}\Sigma_{obs(M)}\big\|_{2}^{2}\bigg]$$

where ν is the smallest eigenvalue of Σ .

NeuMiss network architecture

• M(C)AR Bayes predictor:

$$f_{\ell}^{\star}(X_{obs}, M) pprox eta_{0}^{\star} + \langle eta_{obs}^{\star}, X_{obs}
angle + \langle eta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} S_{obs}^{(\ell)}(X_{obs} - \mu_{obs})
angle$$

- Approximation of $(\Sigma_{obs})^{-1}$: $S_{obs(m)}^{(\ell)} = (Id_{obs(m)} \frac{1}{L}\Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + \frac{1}{L}Id$.
- NeuMiss network architecture (illustrated with a depth of 4):

Figure: $\bar{m} = 1 - m$. Each weight matrix $W_{Neu}^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

NeuMiss network and Gaussian self-masking (MNAR)

M(C)AR Bayes predictor:

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \sum_{mis, obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

• Suppose that $D_{mis} \Sigma_{mis|obs}^{-1} \approx \hat{D}_{mis}$ where \hat{D} is a diagonal matrix. Then the Gaussian self-masking Bayes predicor is:

$$f^{\star}(X_{obs}, M) \approx \beta_0^{\star} + \left\langle \beta_{obs}^{\star}, X_{obs} \right\rangle + \left\langle \beta_{mis}^{\star}, (Id_{mis} + \hat{D}_{mis})^{-1} (\tilde{\mu}_{mis} + \hat{D}_{mis} \mu_{mis}) + (Id_{mis} + \hat{D}_{mis})^{-1} \hat{D}_{mis} \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \right\rangle$$

The self-masking Bayes predictor can be well approximated by adjusting the values learned for the params μ and W_{mix} if $D_{mis}\Sigma_{mis|obs}^{-1}$ are close to diagonal.

Link with the feedforward network

NeuMiss depth-1 layer

$$\mathcal{H}_{\odot m}: \mathbb{R}^d \mapsto \mathbb{R}^d$$

Feedforward layer (d hidden units) $\mathcal{H}_{Rel U}: \mathbb{R}^d \times \{0,1\} \mapsto \mathbb{R}^d$

$$x\odot \bar{m} \xrightarrow{\begin{array}{c} (\mu\odot \bar{m}) \\ \hline (W_{mix}) \\ \in \mathbb{R}^{d\times d} \end{array}}$$

$$\left(\begin{array}{c} x \odot \bar{m} \\ m \end{array}\right) - \left(\begin{array}{c} W \in \mathbb{R}^{2d \times d} \\ b \in \mathbb{R}^d \end{array}\right) \xrightarrow{\text{ReLU}}$$

Proposition (equivalence MLP - depth-1 NeuMiss network)

Denote by h_k^{ReLU} and $h_k^{\odot m}$ the output of the k^{th} hidden units of each layer. Then there exists a configuration of the weights of \mathcal{H}_{ReLU} such that

$$\forall k, \, \forall (m, x_{obs(m)}), \quad h_k^{ReLU}(x_{obs}, m) = h_{\odot m}^k(x_{obs}, m) + c_k, \quad c_k \in \mathbb{R}$$

Outline

1 Optimal predictors in the presence of missing values

NeuMiss networks: learning by approximating the Bayes predictor

3 Empirical results

The $\odot m$ nonlinearity is crucial to the performance

Figure: Performance as a function of capacity across architectures — Data are generated under a linear model with Gaussian covariates in a MCAR setting (50% missing values, $n = 10^5$, d = 20).

Comparison of performances with competitors

- Data
 - linear model
 - Gaussian data
 - ► SNR = 10
- Missing data mechanisms (50% missing values)
 - MCAR
 - MAR
 - Gaussian self-masking (MNAR)
 - Probit self-msking (MNAR)
- Methods
 - EM: Expectation-Maximisation.
 - ► Mice + LR: Conditional imputation followed by linear regression.
 - ► MLP: 1 hidden layer with varied nb of hidden units (between d and 100d), ReLU nonlinearties, data imputed by 0 concatenated with the mask as input, ADAM, adaptative learning rate.
 - NeuMiss The NeuMiss architecture, depth varied between 0 and 10, SGD, adaptative learning rate.

Comparison of performances with competitors

Figure: Predictive performances in various scenarios — varying missing-value mechanisms, number of samples n, and number of features d. All experiments are repeated 20 times. For self-masking settings, the x-axis is in log scale, to accommodate the large difference between methods.

Comparison of performances with competitors

Figure: Predictive performances in various scenarios — varying missing-value mechanisms, number of samples n, and number of features d. All experiments are repeated 20 times. For self-masking settings, the x-xaxis is in log scale, to accommodate the large difference between methods.

Take away

- Theoretically-grounded architecture,
- with a new type of non-linearity: the ⊙ non-linearity.
- Robustness to the missing data mechanism.
- Suited for medium-sized datasets thanks to weight sharing across missing data patterns.

Thank you for your attention!

References I

- Josse, Julie et al. (2019). "On the consistency of supervised learning with missing values". In: arXiv preprint arXiv:1902.06931.
- Le Morvan, Marine et al. (2020). "Linear predictor on linearly-generated data with missing values: non consistency and solutions". In: arXiv preprint arXiv:2002.00658.