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Incomplete data is ubiquitous in many fields
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The classical literature on missing values

Since the 70s, an abundant literature on missing data has flourished.

@ Missing data mechanisms are usually divided into 3 categories:
» MCAR (Missing Completely at Random)

» MAR (Missing at Random)
» MNAR (Missing Non At Random)

@ The literature has been mainly focused on inference and imputation tasks:
> Likelihood based methods under MAR.
» Multiple imputation under MAR.
> Inverse probability weighting under MAR.

But very few works have addressed supervised learning with missing values,
whatever the missing data mechanism.
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Intuition: linear regression with missing values

effect of X2 lost

effect of X2
accounted for by
Y =pB1Xi+ 85X + B3
COI’(X]_, X2) =0.5.

If X5 is missing, the coefficient of X;
should compensate for the
missingness of X,.

X1

The difficulty of supervised learning with missing values is to handle up to 29
missing data patterns (i.e. 2¢ possible inputs of varying length).
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The literature on supervised learning with missing values

@ Some recent works:

> Josse et al. 2019: Imputation by a constant is Bayes consistent, but the
function to be learned can be overly complex (hyp: MAR).

> Le Morvan et al. 2020: In the simple case of linear regression, a single layer
MLP is Bayes consistent, but provided 2¢ hidden units.

» Many adaptations of neural networks to missing values, often involving
imputing by 0 and concatenating with the mask, but no underlying theory.

What architecture should we use to handle missing values? How complex
should it be? What would be a good architecture design?
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The NeuMiss network

For the case of linear regression under various missing data mechanisms:

@ We propose a theoretically grounded neural network architecture,
designed to approximate the Bayes predictor.

@ The complexity of the architecture stays small thanks to the sharing of
parameters across missing data patterns.

@ lts originality and strength comes from the use of a new type of
non-linearity: the multiplication by the missingness indicator.

@ It is robust to the missing data mechanism, including difficult MNAR
settings such as self-masking.
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@ Optimal predictors in the presence of missing values
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Notations and assumptions

Random variables

Ex. of realizations

@ X € R complete data (unavailable)
° Xe {RU{NA}}9: incomplete data (available)
@ M e {0,1}9: mask.

obs(M) (resp. mis(M)) are the indices of the
observed (resp. missing) entries.

Notation abuse: Aobs(m),obs(m) = Aobs(m)

Assumptions:

linear model + Gaussian data:

x =(1.1,2.3,3.1,8,5.27)
x = (1.1,NA, —3.1,8,NA)
m=(0,1,0,0,1)

Xobs(m) = (1.1,3.1,8),
Xmis(m) = (2.3, 5.27)

Bayes predictor:

d

Y=8+Y 8 X +¢ F*
j=1

X ~N(p,X)

argmin  E [(Y (X ))1

fi(RU{NA})Y—R
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The Bayes predictor under M(C)AR

e MCAR: For all m € {0,1}¢, P(M = m|X) = P(M = m).
e MAR: For all m € {0,1}¢, P(M = m|X) = P(M = m|Xops(m))-
Proposition (M(C)AR Bayes predictor)

Under the linear model and Gaussian data assumptions, and a MCAR or
MAR missing data mechanism, the Bayes predictor f* takes the form:

f*(Xobs, M) - 6a+< ;bsa Xobs>+<6;1isv Mmi5+zmis,obs(zobs)_1(Xobs_,uobs»

General idea of the proof:

F* (Xobes M) = E[Y | Xobs(ays M]
= 55 + <B;b57 Xobs> < mis» E[Xmls‘XOb& M]>
= BS + <5st7 Xobs) + < miss e[ Ximis| Xobs])
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The Bayes predictor under Gaussian self-masking (MNAR)

o Gaussian self-masking (MNAR): The missing data mechanism is
self-masked with P(M|X) = HZ:l P(Mg|Xk) and Vk € [1,d],

o~ \2
P(My = 11X¢) = K exp (—%M) with 0 < Ky < 1.
O
P(My = 1]X)
0.4t
0.2}

Xk
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The Bayes predictor under Gaussian self-masking (MNAR)

o Gaussian self-masking (MNAR): The missing data mechanism is
self-masked with P(M|X) = [T¢_, P(Mk|Xx) and Vk € [1,d],

TRy
P(My = 1| Xx) = Kk exp (—1(Xk’uk)) with 0 < K < 1.

Proposition (Gaussian self-masking (MNAR) Bayes predictor)

Under the linear model and Gaussian data assumptions, and a Gaussian
self-masking (MNAR) missing data mechanism, the Bayes predictor f* takes
the form:

f*(XobS7 M) = 55 -+ < ;bs7X0b5> + < :71'57 (/d + Dm"sz;vils\obs)_l
X (ﬂmis + Dmisz,;,'ls‘obs(ﬂmis + Zmis,obs (Zol:vs)_1 (Xobs - Mobs)))>

— =il a3 ~2 ~2
where zmis|obs - zmis,mis - zmis,obszobszobs,mis and D = dlag(ala ) Ud)-
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How to approximate the Bayes predictors?
M(C)AR Bayes predictor:

f*(Xobs, M) = IBS + <ﬂ;bs’ Xobs> + <ﬁ:1isa Hmis + Zmis,obs(zobs)il()<obs - ,Ufobs)>
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How to approximate the Bayes predictors?
M(C)AR Bayes predictor:

f*(Xobs’ M) = Ba + <5;bs’Xobs> + <ﬁ:1isa Hmis + Zmis,obs(zobs)il()<obs - ,uobs)>

Expectation-
Maximisation

O(d?) parameters

No robustness to the
missing data mech.

High computational
complexity!!!
(untractable when d
reaches a few dozens)
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0(27) parameters

Largely
over-parametrized.
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How to approximate the Bayes predictors?
M(C)AR Bayes predictor:

f*(Xobm M) = /35 + <5;bs’Xobs> + <ﬁ;:1is, Hmis + Zmis,obs(zobs)il()%bs - ,U/obs)>

> nb of parameters

NeuMiss
networks

Expectation-
Maximisation

O(d?) parameters O(d?) parameters 0(27) parameters
No robustness to the Sharing parameters across Largely

missing data mech. missing data patterns over-parametrized.
High computational O(d?) computational complexity.

complexity!!!

(untractable when d
reaches a few dozens)
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Differentiable approximations of the inverse covariances

@ We propose to approximate (Zobs(m))*l, for any m, by an order-/¢
approximation S') . defined ively as:
pproximation 5., ., defined recursively as:

) 1 -y 1
Sobs (m) (/dObS(m) - ZZObS(m))Sobs(m) + Zld

where L € R" is greater than the largest eigenvalue of ¥ ops(pm).
o The iterates converge linearly to (Zops(m)) ™"

@ Note: the iterates can be expressed as a series, corresponding to a Neumann
series if S© = Id and ¢ = o, i.e,

S
(zobs m) Z /dobs(m) obs(m))k
k:

Marine Le Morvan NeuMiss networks Montpellier - December 2020 14 /25



Differentiable approximations of the inverse covariances

Define the order-¢ approximation of the Bayes predictor in M(C)AR settings

fe*(XobSa M) = <53b57 Xobs> + </8;1isa Pmis + Zmis,obssl(jjjl(m)(xobs - ﬂobs)>~

Proposition (Risk of the order-¢ approximation)

Suppose that the spectral radius of ¥ is strictly smaller than one. Then under the
linear model and Gaussian data assumptions, and a MCAR or MAR missing data
mechanism, for all ¢ > 1,

1— 20| R* (|2
E (fz*(Xobsv M) - f*(Xobsv M))2 < ME ||Id - S((,?,l(M)Zobs(M)Hi

where v is the smallest eigenvalue of ¥.
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NeuMiss network architecture
o M(C)AR Bayes predictor:

fe*(XobSa M) ~ ﬁa + <B;b5a Xobs> + <6;1is> Hmis + Zmis,obssl(j;)s()(obs - ,Ufobs)>

@ Approximation of (X ops) 1 Sgi)s(m) = (Idobs(m) — 1 % obs(m )S(is(z) +1 Lid.

@ NeuMiss network architecture (illustrated with a depth of 4):

WMix
(Zmis, obs)

Neumann iterations \'g Non-linearity

Figure: m =1 — m. Each weight matrix W,E,’;Z, corresponds to a simple transformation of
the covariance matrix indicated in blue.
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NeuMiss network and Gaussian self-masking (MNAR)

e M(C)AR Bayes predictor:

f*(Xob57 M) = /33 + </8;bs7 Xabs> + <ﬂ;f5’ Hmis + Zmis.obs(zc7bs)71()<obs - Nobs))

@ Suppose that D,,,,-s):;l.lslobs ~ [A)m,-s where D is a diagonal matrix. Then the

Gaussian self-masking Bayes predicor is:

f*(Xobs, M) ~ 55 + <ﬂ:bs; Xobs> + <ﬁ;1i5, (Idmis + Dm:’s)il(,i:l/mis + Dmis//Lmis)
+ (ldm/’s + bmis) 1Dnu‘szm/}..obs (zobs)_1 (Xobs - ,LLobs)>

The self-masking Bayes predictor can be well approximated by adjusting the
values learned for the params y and W, if Dm,-s):_1 are close to diagonal.

mis|obs
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Link with the feedforward network

NeuMiss depth-1 layer Feedforward layer (d hidden units)
Hom : R — RY Hrerv : RY x {0,1} — R

Proposition (equivalence MLP - depth-1 NeuMiss network)

Denote by etV and h?™ the output of the k' hidden units of each layer. Then
there exists a configuration of the weights of Hgery such that

Vk7 V(m, Xobs(m))a hfeLU(XObSu m) = hé)m(xob57 m) +Ck, Ck € R
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The ®m nonlinearity is crucial to the performance

o 0.00
© NeuMiss,.*"" —Test set

u P ---Train set *
g .

& —0.05 - MLP Wide
g

(o]

s

S —0.10 A MLP Deep

103 104
Number of parameters

Figure: Performance as a function of capacity across architectures — Data are
generated under a linear model with Gaussian covariates in a MCAR setting (50%

missing values, n = 10°, d = 20).
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Comparison of performances with competitors

e Data
» linear model

» Gaussian data
» SNR =10

@ Missing data mechanisms (50% missing values)

» MCAR

MAR

Gaussian self-masking (MNAR)
Probit self-msking (MNAR)

vvyy

@ Methods

» EM: Expectation-Maximisation.

» Mice + LR: Conditional imputation followed by linear regression.

» MLP: 1 hidden layer with varied nb of hidden units (between d and 100d),
ReLU nonlinearties, data imputed by 0 concatenated with the mask as input,
ADAM, adaptative learning rate.

» NeuMiss The NeuMiss architecture, depth varied between 0 and 10, SGD,
adaptative learning rate.
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Comparison of performances with competitors

MCAR
n=20000 n=100000
N OSNN |  SE
MICE + LR1¢ HllH = =
MLP (X ¢ HH
NeuMiss
-0.10 -0.05 0.00 -0.05 0.00
d=20 EM |
MICE + LR {—lll — T
MLP{ —H
NeuMiss i—.-l
-0.10 -0.05 0.00-0.10 -0.05 0.00
EM
MICE + LR —TH A= =
MLP{¢ I ¢ —-
NeuMiss {¢ |—.—|

-0.15 -0.10 -0.15 -0.10
R2 - Bayes rate

Figure: Predictive performances in various scenarios — varying missing-value
mechanisms, number of samples n, and number of features d. All experiments are
repeated 20 times. For self-masking settings, the x-axis is in log scale, to accommodate
the large difference between methods.
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Comparison of performances with competitors

Gaussian self-masking (MNAR)

EM
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MLP
NeuMiss
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HT 1+ HTH
HH H
¢+ HH o
HH i
-0.1 -0.01 -0.1 -0.01
HI 1+ HIH
HH¢ HH
HIH HIH
HIlH
0.1 -0.0 -0.1 -0.01
HlH HH
—aH HIH
HEH
-0.2 -0.1 -0.1 -0.05

R2 - Bayes rate

Probit self-masking (MNAR)

EM
MICE + LR
MLP
NeuMiss
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MICE + LR
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MLP
NeuMiss
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| (K
-0.1 -0.01 -0.1 -0.01
]
L (g
[ o ¢ |
-0.1 -0.01 -0.1 -0.01

R2 - (best R2)

Figure: Predictive performances in various scenarios — varying missing-value
mechanisms, number of samples n, and number of features d. All experiments are
repeated 20 times. For self-masking settings, the x-xaxis is in log scale, to accommodate
the large difference between methods.
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Take away

Neumann iterations

o Theoretically-grounded architecture,
@ with a new type of non-linearity: the © non-linearity.
@ Robustness to the missing data mechanism.

@ Suited for medium-sized datasets thanks to weight sharing across missing
data patterns.

Thank you for your attention!
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