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Incomplete data is ubiquitous in many fields

0 50 100 150 200
clinical variables

0

1000

2000

3000

4000

5000

6000

7000

pa
tie

nt
s

missing
observed

Traumabase clinical health records.

Sources of missingness:
I Survey nonresponse.
I Sensor failure.
I Changing data gathering

procedure.
I Database join.
I ...

Missing data is frequent in
economics, social, political or
health sciences.
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The classical literature on missing values

Since the 70s, an abundant literature on missing data has flourished.

I Missing data mechanisms are usually divided into 3 categories:
• MCAR (Missing Completely at Random)
• MAR (Missing at Random)
• MNAR (Missing Non At Random)

I The literature has been mainly focused on inference and imputation tasks:
• Likelihood based methods under MAR.
• Multiple imputation under MAR.
• Inverse probability weighting under MAR.

But very few works have addressed supervised learning with missing values,
whatever the missing data mechanism.
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Challenges of supervised learning with missing values

I Supervised learning with missing values:

• Scarce literature (vs Inference, Imputation)

• Arbitrary subsets of variables.

• Computational and statistical challenge.
Ex: d = 50 =⇒ 250 ≈ 1015 possible missing data patterns.

• Widespread current practice: Impute-then-Regress. Very little theoretical
foundation.
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• Computational and statistical challenge.
Ex: d = 50 =⇒ 250 ≈ 1015 possible missing data patterns.
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foundation.

 1.1 0.2 0.5 1.3
0.1 na 0.2 1.4
na 0.7 1.2 na

 Impute

 1.1 0.2 0.5 1.3
0.1 0.5 0.2 1.4
0.6 0.7 1.2 1.3

 Regress Predictions y
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Impute-then-Regress procedures

Questions

I Can Impute-then-Regress procedures be Bayes optimal?

I How should we choose the imputation function?

I What if the data is Missing Not At Random (MNAR)?

I Define Impute-then-Regress procedures as functions of the form:

g ◦ Φ, where Φ ∈ F I , g : Rd 7→ R.

where imputation functions
Φ ∈ F I are of the form:

na

x2

x3

na

x2

x3

φ
(m)
1 (x2, x3)

φ
(m)
4 (x2, x3)
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Formalizing the problem

I Assumption - The response Y is a function of the (unavailable) complete
data plus some noise:

Y = f ?(X) + ε, X ∈ Rd , Y ∈ R.

I Optimization problem:

min
f :(R∪{NA})d 7→R

R(f ) := E

[(
Y − f ( X̃ )

)2
]

I A Bayes predictor is a minimizer of the risk. It is given by:

f̃ ?(X̃) := E
[
Y |Xobs(M),M

]
= E

[
f (X)|Xobs(M),M

]
where M ∈

{
0, 1
}d is the missingness indicator.

The Bayes rate R? is the risk of the Bayes predictor: R? = R(f̃ ?).
A Bayes optimal function f achieves the Bayes rate, i.e, R(f ) = R?.

6/21

Incomplete data
(available)



Can Impute-then-Regress procedures be Bayes optimal?

Yes, they can! In fact, they almost always are...

Theorem (Bayes optimality of Impute-then-Regress procedures)
Let g?

Φ be the minimizer of the risk on the data imputed by Φ. Assume that i)
Φ ∈ F I

∞, ii) the response Y is generated as Y = f ?(X) + ε. Then, for:
• all missing data mechanisms,
• almost all imputation functions,

g?
Φ ◦ Φ is Bayes optimal.

In other words, for almost all imputation functions Φ ∈ F I
∞, a universally

consistent algorithm trained on the imputed data Φ(X̃) is Bayes consistent.
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Sketch of the proof: arguments from differential topology

Sketch of the proof:
1. All data points with a missing data pattern m are mapped to a manifold M(m) of

dimension |obs(m)| (Preimage Theorem).

2. The missing data patterns of imputed data points can almost surely be de-identified
(Thom transversality Theorem).

3. Given 2), we can exhibit a g?
Φ, which does not depend on m, and which for each

manifold equals the Bayes predictor except on a set of measure 0.

Complete data Imputed data (manifolds)
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Which imputation function should one choose?

Why bother! 
From now on I use constant 
imputations!

 
May be a good imputation 
would still provide an 
easier learning problem?

Question Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

From now on, we suppose f ? is smooth.
We will denote by ΦCI the imputation by the conditional expectation.
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Chaining oracles

Question What is the risk of chaining oracles:
f ? ◦ ΦCI?

Assumption (i): there exists positive semi-definite matrices H̄+ and H̄− such
that for all X ∈ S, H̄− ≤ H(X) ≤ H̄+.

Proposition (Non consistency of chaining oracles)
Under assumption (i), the excess risk of chaining oracles compared to the Bayes
risk R? is upper-bounded by:

R(f ?◦ΦCI )−R? ≤
1
4
EM

[
max

(
tr
(

H̄−mis,mis Σmis|obs,M

)2
, tr
(

H̄+
mis,mis Σmis|obs,M

)2
)]
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High variance
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Learning on conditionally imputed data

Question
What can we say about the optimal predictor on the

conditionally imputed data: g?
ΦCI ◦ ΦCI?

Proposition (Regression function discontinuities)
Suppose that f ? ◦ ΦCI is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., for all x ,
P(M = (0, . . . , 0),X = x) > 0. Then there is no continuous function g
such that g ◦ ΦCI is Bayes optimal.

Note: The size of the discontinuities are also controlled by the
variance-curvature tradeoff.
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Optimizing imputations for a fixed regression function

Question If the predictor is fixed as f ?, can we find a continuous
imputation function Φ so that f ? ◦ Φ is Bayes optimal?

Not always...
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Optimizing imputations for a fixed regression function

Question If the predictor is fixed as f ?, can we find a continuous
imputation function Φ so that f ? ◦ Φ is Bayes optimal?

But sometimes yes!
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Optimizing imputations for a fixed regression function

Question If the predictor is fixed as f ?, can we find a continuous
imputation function Φ so that f ? ◦ Φ is Bayes optimal?

Proposition (Existence of continuous corrected imputations)
Assume that f ? is uniformly continuous, twice continuously differentiable
and that, for all missing patterns m and all xobs , the support of
Xmis |Xobs = xobs ,M = m is connected.

Additionally, assume that for all missing patterns m, and all (xobs , xmis),
the gradient of f ? with respect to the missing coordinates is nonzero:

∇xmis f ?(xobs , xmis) 6= 0. (1)

Then, for all m, theres exist continuous imputation functions
φ(m) : R|obs(m)| → R|mis(m)| such that f ? ◦ Φ is Bayes optimal.

Proof: based on a Global Implicit Function theorem.
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Simulations

I X ∼ N (X |µ,Σ) with two covariance settings: ’high’ and ’low’.

I Y = f ?(X ) + ε.
• Two settings: ’bowl’ and ’wave’.
• β chosen so that β>X centered on 1 with variance 1.
• Signal-to-noise ratio of 10.

I Two missing data mechanisms: MCAR and Gaussian self-masking (MNAR).
50% missing values.

1 0 1 2 3
X + 0

f*
(

X
+

0) bowl

1 0 1 2 3
X + 0

f*
(

X
+

0) wave
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Baseline methods benchmarked

Oracles and semi-oracles
I Bayes predictors.
I Chaining oracles: f ? ◦ ΦCI

I Oracle Impute + MLP: Imputation by ΦCI follwed by regression with a MultiLayer
Perceptron.

Impute-then-Regress predictors
I Mean Impute + MLP
I MICE + MLP: MICE implements a conditional imputation, but only valid under

MAR.
I Gradient-Boosted Regression Trees: with Missing Incorporated Attribute strategy.
I NeuMiss + MLP

We also try concatenating the mask after mean or MICE imputation to help handle the
MNAR case.
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NeuMiss: a neural network for missing values

x � m̄ −

µ� m̄

W (0) + W (0) + W (0) + MLP Y

Non-linearity
�m̄

NeuMiss
I Theoretically grounded: differentiable approximation of the

conditional expectation.
I Impute-then-Regress architecture.

17/21

Input data:
missing values are
replaced by zeros.

The NeuMiss layer:
Fixed width of size d .
Shared weights.

Residual connections.
New non-linearity: �m.

Conventional
feedforward NN



NeuMiss: a neural network for missing values

I Gaussian data hypothesis: X ∼ N
(

X |µ,Σ
)

I Conditional expectation:

E
[
Xmis |Xobs

]
= µmis + Σmis,obs

(
Σobs

)−1 (Xobs − µobs
)

I Approximation of
(
Σobs

)−1 by a truncated Neumann series:

(Σobs)−1 = 1
L

∞∑
k=0

(Idobs −
1
L Σobs)k

I Order-` approximation of
(
Σobs

)−1 (for any obs):

S(`)
obs = (Idobs −

1
L Σobs)S(`−1)

obs + 1
L Id .
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NeuMiss: a neural network for missing values

x � m̄ −

µ� m̄

W (0) + W (0) + W (0) + MLP Y

Non-linearity
�m̄

S(`)
obs(xobs − µobs) = (Idobs −

1
L Σobs)S(`−1)

obs (xobs − µobs) + 1
L (xobs − µobs).
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Experimental results

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

high correlation: easy low correlation: hard high correlation: easy low correlation: hard

0.4 0.2 0.0

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

0.4 0.2 0.0 0.3 0.2 0.1 0.0 0.2 0.1 0.0
Drop in R2 compared to Bayes predictor

MCAR

Bowl Wave

MNAR
Gaussian
self masking

20/21



Takeaway

A theoretical foundation for Impute-then-Regress procedures
Impute-then-Regress procedures are Bayes optimal for all missing data
mechanisms and almost all imputation functions.

NeuMiss + MLP: a powerful predictor in the presence of missing values.

Thank you for your attention!
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