001770707707000}

T0TT0T0000000TTT

‘000000077
10000777
0177
‘000000077
0TIT
700000007

What’s a good imputation to predict with
missing values?

Marine Le Morvan — Soda, INRIA

8 lrzia—

Julie Josse Erwan Scornet Gael Varoquaux

40007

T7T070077707073

~070000000TTT



Incomplete data is ubiquitous in many fields

patients
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50 100 150 200
clinical variables

Traumabase clinical health records.
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Sources of missingness:
Survey nonresponse.
Sensor failure.

Changing data gathering
procedure.

Database join.

Missing data is frequent in
economics, social, political or
health sciences.



The classical literature on missing values

Since the 70s, an abundant literature on missing data has flourished.

Missing data mechanisms are usually divided into 3 categories:
MCAR (Missing Completely at Random)

MAR (Missing at Random)
MNAR (Missing Non At Random)

The literature has been mainly focused on inference and imputation tasks:
Likelihood based methods under MAR.
Multiple imputation under MAR.
Inverse probability weighting under MAR.

But very few works have addressed supervised learning with missing values,
whatever the missing data mechanism.

3/21



Challenges of supervised learning with missing values

Supervised learning with missing values:

Scarce literature (vs Inference, Imputation)
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Supervised learning with missing values:

Scarce literature (vs Inference, Imputation)

Arbitrary subsets of variables.
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Challenges of supervised learning with missing values

Supervised learning with missing values:

Scarce literature (vs Inference, Imputation)
Arbitrary subsets of variables.

Computational and statistical challenge.
Ex: d =50 = 2°0 ~ 10 possible missing data patterns.
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Challenges of supervised learning with missing values

Supervised learning with missing values:

Scarce literature (vs Inference, Imputation)
Arbitrary subsets of variables.

Computational and statistical challenge.
Ex: d =50 = 2°0 ~ 10 possible missing data patterns.

Widespread current practice: Impute-then-Regress. Very little theoretical

foundation.
1.1 0.2 05 1.3 1.1 0.2 05 1.3
0.1 na 02 14 Impute 0.1 05 02 14 Regress Predictions y
na 0.7 1.2 na 06 0.7 1.2 1.3
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Impute-then-Regress procedures

Can Impute-then-Regress procedures be Bayes optimal?
Questions How should we choose the imputation function?

What if the data is Missing Not At Random (MNAR)?

Define Impute-then-Regress procedures as functions of the form:

go®, whered ¢ F'. g :R? — R.

na O ¢ (3, %)
where imputation functions @ @
® € F! are of the form: ®7H@
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Formalizing the problem

Assumption - The response Y is a function of the (unavailable) complete
data plus some noise:

Y=Ff(X)4+e¢, XeR? YeR.

Incomplete data

Optimization problem: / (available)
2

min  R(f):=E [(Y F( X ))

f:(RU{NA})Y—R

A Bayes predictor is a minimizer of the risk. It is given by:

F*(X):=E {Y\Xobsw), M} =K {f(X)|Xobs(M), M}
where M € {0, 1}d is the missingness indicator.
The Bayes rate R* is the risk of the Bayes predictor: R* = R(f*).

A Bayes optimal function f achieves the Bayes rate, i.e, R(f) = R*.
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Can Impute-then-Regress procedures be Bayes optimal?
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Can Impute-then-Regress procedures be Bayes optimal?

Yes, they can! In fact, they almost always are...
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Can Impute-then-Regress procedures be Bayes optimal?

Yes, they can! In fact, they almost always are...

Theorem (Bayes optimality of Impute-then-Regress procedures)

Let g5 be the minimizer of the risk on the data imputed by ®. Assume that i)
& € Fl, ii) the response Y is generated as Y = f*(X) + €. Then, for:

all missing data mechanisms,
almost all imputation functions,

gs o ® is Bayes optimal.

In other words, for almost all imputation functions ¢ ¢ F!., a universally
consistent algorithm trained on the imputed data ®(X) is Bayes consistent.
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Sketch of the proof: arguments from differential topology

Sketch of the proof:

1. All data points with a missing data pattern m are mapped to a manifold M(™ of
dimension |obs(m)| (Preimage Theorem).

Complete data Imputed data (manifolds)
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Sketch of the proof: arguments from differential topology

Sketch of the proof:

1. All data points with a missing data pattern m are mapped to a manifold M(™ of
dimension |obs(m)| (Preimage Theorem).

2. The missing data patterns of imputed data points can almost surely be de-identified
(Thom transversality Theorem).

3. Given 2), we can exhibit a gg, which does not depend on m, and which for each
manifold equals the Bayes predictor except on a set of measure 0.

X3

X2
Complete data Imputed data (manifolds)
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Which imputation function should one choose?

May be a good imputation
would still provide an
easier learhing problem?

Why bother!
From now on I use constant
imputations!

Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

Question

From now on, we suppose f* is smooth.
We will denote by & the imputation by the conditional expectation.
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Chaining oracles

What is the risk of chaining oracles:

Question Fr o dCl7

Assumption (i): there exists positive semi-definite matrices H* and H™ such
that for all X € S, H™ < H(X) < H*.

Proposition (Non consistency of chaining oracles)

Under assumption (i), the excess risk of chaining oracles compared to the Bayes
risk R* is upper-bounded by:

2 2
0 0+
]EM |jT13X <tr (Hmisymiszmis\obs,M) , tr <Hm,‘sym,'szmis\ob5,M) )]

R(FFod)—R* <

Bl
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Chaining oracles

What is the risk of chaining oracles:
f*od¢?

_ 2 _ 2
En [max (tr (Hmis,miszmis\obs«,M> , tr (Hrtisﬁmiszmis\obs,lw) )]

Question

R(f* 00y - R* <

F

Frw'X)

High variance

Low curvature

wl' X

T a1
Vary, .| Xobs [w'X] = W5 Xmis|obs Winis
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Learning on conditionally imputed data

What can we say about the optimal predictor on the

Question conditionally imputed data: g o ®<'?

Proposition (Regression function discontinuities)

Suppose that f* o @</ is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., for all x,

P(M = (0,...,0),X = x) > 0. Then there is no continuous function g
such that g o @ is Bayes optimal.

Note: The size of the discontinuities are also controlled by the
variance-curvature tradeoff.
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Optimizing imputations for a fixed regression function

If the predictor is fixed as f*, can we find a continuous

Question imputation function ® so that f* o ® is Bayes optimal?
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Optimizing imputations for a fixed regression function

If the predictor is fixed as f*, can we find a continuous

Question imputation function ® so that f* o ® is Bayes optimal?

Not always...




Optimizing imputations for a fixed regression function

If the predictor is fixed as f*, can we find a continuous

Question imputation function ® so that f* o ® is Bayes optimal?

But sometimes yes!
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Optimizing imputations for a fixed regression function

If the predictor is fixed as f*, can we find a continuous

Question imputation function ® so that f* o ® is Bayes optimal?

Proposition (Existence of continuous corrected imputations)

Assume that f* is uniformly continuous, twice continuously differentiable
and that, for all missing patterns m and all x,ps, the support of
Ximis| Xobs = Xobs, M = m is connected.

Additionally, assume that for all missing patterns m, and all (Xops, Xmis ).
the gradient of f* with respect to the missing coordinates is nonzero:

V><,,,,-s f~ (Xob57 Xmis) 7é 0. (l)

Then, for all m, theres exist continuous imputation functions
P(m)  Rlobs(ml _, RImis(m)| sych that £* o ® is Bayes optimal.

Proof: based on a Global Implicit Function theorem.
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Simulations

X ~ N(X|u, £) with two covariance settings: 'high’ and 'low’.

Y = £(X) + e
Two settings: 'bowl’ and 'wave’.
B chosen so that 87 X centered on 1 with variance 1.
Signal-to-noise ratio of 10.

Two missing data mechanisms: MCAR and Gaussian self-masking (MNAR).
50% missing values.

-~ bowl -~ wave

«Q «Q

+ +

x x

= =

2 2

& &

-1 0 1 2 3 -1 0 1 2 3
BTX + Bo BTX+Bo
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Baseline methods benchmarked

Oracles and semi-oracles
Bayes predictors.
Chaining oracles: f* o ¢

Oracle Impute + MLP: Imputation by &< follwed by regression with a MultiLayer
Perceptron.

Impute-then-Regress predictors
Mean Impute + MLP

MICE + MLP: MICE implements a conditional imputation, but only valid under
MAR.

Gradient-Boosted Regression Trees: with Missing Incorporated Attribute strategy.
NeuMiss + MLP

We also try concatenating the mask after mean or MICE imputation to help handle the
MNAR case.
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NeuMiss: a neural network for missing values

x®m

Input data: The NeuMiss layer: Conventional
missing values are  Fixed width of size d. Residual connections.  feedforward NN
replaced by zeros.  Shared weights. New non-linearity: ©m.

Theoretically grounded: differentiable approximation of the
NeuMiss conditional expectation.

Impute-then-Regress architecture.
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NeuMiss: a neural network for missing values

Gaussian data hypothesis: X ~ N (X\M,Z)

Conditional expectation:
-1
E |:Xmis|Xob5:| = Mmis + Zmis,obs (Zobs) (Xobs - Mobs)

Approximation of (Zobs)fl by a truncated Neumann series:
o0
obs) = Z Z Idabs - obs)k
k=0

Order-¢ approximation of (Zobs)_l (for any obs):

SO _

obs T

(Idops — Zzobs)sgis b4 le.
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NeuMiss: a neural network for missing values

Gaussian data hypothesis: X ~ N (X\,u,):)

Conditional expectation:

E [Xmis|Xobs} = fmis + Lmis,obs (Zobs)il (Xobs - ﬂobs)

N -1 .
Approximation of (£ops) by a truncated Neumann series:

obs)7 Z Idobs -
k:

Order-£ approximation of (Zobs)fl (for any obs):

S((Jf,l(xobs - Uobs) = (Idobs - Zol:rs)St(j,;l)(Xobs

1
L
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NeuMiss: a neural network for missing values

x®m

Input data: The NeuMiss layer: Conventional
missing values are  Fixed width of size d. Residual connections.  feedforward NN
replaced by zeros.  Shared weights. New non-linearity: ©m.

) 1 (e-1) 1
Sobs(xobs - Uobs) = (Idobs - ZZObS)Sobs (Xobs - Uobs) + Z(Xobs - ,uobs)~
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Experimental results

B

owl Wave

high correlation: eas
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Takeaway
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m A theoretical foundation for Impute-then-Regress procedures
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mechanisms and almost all imputation functions.

m NeuMiss + MLP: a powerful predictor in the presence of missing values.

Thank you for your attention!
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Impute-then-Regress procedures are Bayes optimal for all missing data :
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