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Motivating example

DNA sequences

s1 − − − s2 − − − s3 − − − − − s4 − − − − s5 − − − − − − y

P1 . . . A T C G C T G A A T A C G G C T C G A A A T C G G A . . . 3

P2 . . . T T C G G T G A G T A C G G C T C G A A A T C G G A . . . 7

P3 . . . A T C G C T G A A T A C G G C T C G A A A T C G G A . . . 7

P4 . . . T T C G C T G A G T A C G G C T C G A A A T C G G A . . . 3

P5 . . . T T C G C T G A G T A C G G C T C G A A A T C G G A . . . 3

P6 . . . A T C G G T G A G T A C G G T T C G A T A T C G G A . . . 7

P7 . . . A T C G G T G A A T A C G G T T C G A T A T C G G A . . . 7

P8 . . . T T C G G T G A G T A C G G C T C G A T A T C G G A . . . 3

↑ ↑ ↑ ↑ ↑

Single Nucleotide Polyphormisms (SNPs)

Sequence Query

Response to treatment?
Disease risk?
Drug assimilation rate?
Ancestry?
. . .
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Motivating example

DNA sequences

s1 − − − s2 − − − s3 − − − − − s4 − − − − s5 − − − − − − y
P1 . . . 1 0 1 0 0 . . . 3

P2 . . . 0 1 0 0 0 . . . 7

P3 . . . 1 0 1 0 0 . . . 7

P4 . . . 0 0 0 0 0 . . . 3

P5 . . . 0 0 0 0 0 . . . 3

P6 . . . 1 1 0 1 1 . . . 7

P7 . . . 1 1 1 1 1 . . . 7

P8 . . . 0 1 0 0 1 . . . 3

↑ ↑ ↑ ↑ ↑

Single Nucleotide Polyphormisms (SNPs)

Sequence Query

Response to treatment?
Disease risk?
Drug assimilation rate?
Ancestry?
. . .
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Motivating example

The LASSO is commonly used to predict y :

y1
...

yn


︸ ︷︷ ︸
∈Rn

≈

X1 X2 . . . Xn


︸ ︷︷ ︸

X∈J0,1Kn×p

.

w∗1
...

w∗n


︸ ︷︷ ︸
∈Rp

Typically, n << p.

w∗ ← argmin
w∈Rp

1
n
‖y − Xw‖2

2︸ ︷︷ ︸
data fitting term

+ λ ‖w‖1︸ ︷︷ ︸
sparsity inducing penalty

(LASSO)

The penalty forces only a few features to be selected in the model, for ex:

y = w∗1 Xs1 + w∗4 Xs4 + w∗5 Xs5
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Motivating example

We would like to also consider second order interaction effects of the form:

Xj � Xk , (j , k) ∈ J1, pK2

where � is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

y = w∗1 Xs1 + w∗4 Xs4 + w∗5 Xs5 + w∗1,2Xs1 � Xs2
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We would like to also consider second order interaction effects of the form:

Xj � Xk , (j , k) ∈ J1, pK2

where � is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

y = w∗1 Xs1 + w∗4 Xs4 + w∗5 Xs5 + w∗1,2Xs1 � Xs2

Why is it interesting?

brown hair genes
AND

MCR1-variant 1

brown hair genes
AND

MCR1-variant 2
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Motivating example

We would like to also consider second order interaction effects of the form:

Xj � Xk , (j , k) ∈ J1, pK2

where � is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

y = w∗1 Xs1 + w∗4 Xs4 + w∗5 Xs5 + w∗1,2Xs1 � Xs2

Why is it difficult?

The number of interactions terms is equal to:

D =
p(p − 1)

2

If p = 100.000, then D = 5× 109.
Classical LASSO solvers will be too slow.

This work aims at providing a framework to fit sparse linear models
with second order interaction terms when the data is binary.
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Problem formulation

y =

y1
...

yn


︸ ︷︷ ︸
∈Rn

, X =

X1 X2 . . . Xn


︸ ︷︷ ︸

∈J0,1Kn×p

, Z =

X1 X2 . . . Xn X1Xn . . . XnXn


︸ ︷︷ ︸

∈J0,1Kn×D

We will indifferently use Xj � Xk and XjXk .

Primal problem

min
(w,b)∈RD×R

gλ(w , b) =
1
n
‖y − Zw − b‖2

2 + λ ‖w‖1 (1)

Dual problem

max
θ∈Rn

fλ(θ) =
1
2
‖y‖2

2 −
1
2
‖θ − y‖2

2 s.t.

{∣∣(XjXk )
Tθ
∣∣ ≤ λ (j , k) ∈ J1, pK2

1Tθ = 0
(2)
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Previous work

Safe Pattern Pruning (SPP) (Nakagawa et al., 2016)

SPP relies on safe screening rules. Given primal and dual feasible solutions,
safe screening rules identify features which are guaranteed not be active at the
optimum.

The idea of SPP is to leverage the tree structure of interactions features, and
propose a screening rule applicable to entire branches.

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Branch 1
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WHInter

Limitations:
X SPP does not allow to prune enough branches, especially when n increases.
X The size of the safe set can be big (for medium values of λ)
X A dual feasible point is expensive to compute.

We propose WHInter:
X Working set strategy.
X New branch pruning strategy for the identification of the active set.
X Efficient computation of branch bounds using a Maximum Inner Product Search (MIPS)

framework for binary data.

WHInter achieves a speed ups of up to one order of magnitude compared to SPP.
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{ }
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

InitializeMλ.
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

InitializeMλ.
Pre-solve and initialize φ.

w , b ← argmin
(w,b)∈RD×R

1
n
‖y − ZMλ

w − b‖2
2 + λ ‖w‖1

φ← y − ZMλ
w − b
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Problem formulation

y =

y1
...

yn


︸ ︷︷ ︸
∈Rn

, X =

X1 X2 . . . Xn


︸ ︷︷ ︸

∈J0,1Kn×p

, Z =

X1 X2 . . . Xn X1Xn . . . XnXn


︸ ︷︷ ︸

∈J0,1Kn×D

The KKT conditions state that:

∀(j , k) ∈ J1, pK2,
∣∣∣(XjXk )

Tθ∗
∣∣∣ ∈ {{λ} if w∗j,k 6= 0

[−λ, λ] if w∗j,k = 0
(3)

We will say that the constraint relative to XjXk is violated whenever
∣∣(XjXk )

Tθ
∣∣ > λ

The primal and dual optimal variables (w∗, b∗) and θ∗ are related as follows:

θ∗ = y − Zw∗ − b∗
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

If η(φ,Xj ) ≤ λ, then we know that all features in the branch respect the optimality conditions.

Marine Le Morvan (Mines Paristech) Scaling up the LASSO with interaction features November 7th , 2017 12 / 31



WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X1) < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X1) < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X2) ≥ λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X3) ≥ λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X4) < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

η(φ,X4) < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
Compute the bound η(φ,Xj ).

We define η(φ,Xj ) as an upper bound on max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣.

done
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

∣∣∣(X2X3)
T φ
∣∣∣ ≥ λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

∣∣∣(X2X3)
T φ
∣∣∣ ≥ λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

∣∣∣(X2X4)
T φ
∣∣∣ < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

∣∣∣(X3X1)
T φ
∣∣∣ < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

∣∣∣(X3X4)
T φ
∣∣∣ < λ
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}

# Identify violated constraints and update working set.
If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.

mj (φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(Xj Xk
)T

φ
∣∣∣ , Mλ ←Mλ ∪

{
Xj Xk :

∣∣∣(Xj Xk
)t

φ
∣∣∣ ≥ λ}

done
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x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}
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Update residuals

w , b ← argmin
(w,b)∈RD×R

1
n
‖y − ZMλ

w − b‖2
2 + λ ‖w‖1

φ← y − ZMλ
w − b
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Branch Bounds

Suppose the current residual is φ. For each branch j ∈ J1, pK, we want a bound
η(φ,Xj) such that:

mj(φ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(XjXk )
T φ
∣∣∣ ≤ η(φ,Xj)

One possibility is to use the following bound (as in Nakagawa et al.):

mj(φ) ≤ max
x∈J0,1Kn

∣∣∣(Xj � x)T φ
∣∣∣

= max

 ∑
i:φi>0

Xijφi ,−
∑

i:φi<0

Xijφi


= ζ(φ,Xj)

X can be computed very efficiently.
X but becomes too loose when n increases, leading to only few branches pruned.
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Branch Bounds

Suppose the current residual is φ.
Suppose we have already computed mj(φ

prev ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(XjXk )
T φprev

∣∣∣
We propose the following bound:

mj (φ) = max
x∈De(Xj )

∣∣∣xTφ
∣∣∣

= max
x∈De(Xj )

∣∣∣xTφprev + xT (φ− φprev)∣∣∣
≤ max

x∈De(Xj )

∣∣∣xTφprev
∣∣∣+ max

x∈De(Xj )

∣∣∣xT (φ− φprev)∣∣∣
≤ mj (φprev ) + max

x∈J0,1Kn

∣∣∣(Xj � x
)T (

φ− φprev)∣∣∣
= mj (φprev ) + max

 ∑
i:φi>φ

prev
i

Xij
(
φi − φ

prev
i

)
,−

∑
i:φi<φ

prev
i

Xij
(
φi − φ

prev
i

)
= η(φ,Xj )

We leverage previously computed maximum inner products and the fact that
residuals along the regularization path are correlated.
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Suppose we have already computed mj(φ

prev ) = max
Xk : Xj Xk /∈Mλ

∣∣∣(XjXk )
T φprev

∣∣∣
We propose the following bound:

mj (φ) = max
x∈De(Xj )

∣∣∣xTφ
∣∣∣

= max
x∈De(Xj )

∣∣∣αxTφprev + xT (φ− αφprev)∣∣∣
≤ max

x∈De(Xj )
|α|
∣∣∣xTφprev

∣∣∣+ max
x∈De(Xj )

∣∣∣xT (φ− αφprev)∣∣∣
≤ |α|mj (φprev ) + max

x∈J0,1Kn

∣∣∣(Xj � x
)T (

φ− αφprev)∣∣∣
= |α|mj (φprev ) + max

 ∑
i:φi>αφ

prev
i

Xij
(
φi − αφ

prev
i

)
,−

∑
i:φi<αφ

prev
i

Xij
(
φi − αφ

prev
i

)
= η(φ,Xj , α)

We leverage previously computed maximum inner products and the fact that
residuals along the regularization path are correlated.
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Branch Bounds: Intuition

η(φ,Xj , α) = |α|mj + max

 ∑
i:φi>αφ

prev
i

Xij
(
φi − αφ

prev
i

)
,−

∑
i:φi<αφ

prev
i

Xij
(
φi − αφ

prev
i

)

φprev
φ
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 ∑
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Branch Bounds: Optimisation

η(φ,Xj , α) = |α|mj + max

 ∑
i:φi>αφ

prev
i

Xij
(
φi − αφ

prev
i

)
,−

∑
i:φi<αφ

prev
i

Xij
(
φi − αφ

prev
i

)

How to choose α?

φprev
φ

αφprev

φ−αφprev

Option 1: α∗ = argmin
α∈R

η(φ,Xj , α)

X η is a piecewise continuous function which is convex in α.
X η can be minimized in O(nj log nj ) operations.

Option 2: α`2 = φT φprev

‖φprev‖2
2

X α`2 minimizes ‖φ− αφprev‖2
2.

X α`2 can be obtained in O(nj ) operations.
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WHInter pseudo algorithm

Input: X ∈ J0, 1Kn×p, y ∈ Rn

∅

x1

x1x2 x1x3 x1x4

x2

x2x1 x2x3 x2x4

x3

x3x1 x3x2 x3x4

x4

x4x1 x4x2 x4x3

Mλ =
{

x1x2 x2x3

}
1: InitializeMλ

2: repeat:
3: for each branch j do:

# Identify violated constraints and update working set.
4: Compute the bound η(φ,Xj ).
5: If η(φ,Xj ) ≥ λ, compute mj (φ) and updateMλ.
6: Solve subproblem
7: until no violated constraint remains.
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Maximum inner product computation

Whenever η(φ,Xj , α
∗) ≥ λ, then there is a chance that branch j contains a feature

which is violated for the current residual φ. In this case we need to:
X identify all violated features.
X compute:

mj = max
Xk :Xj Xk /∈Mλ

∣∣∣(Xj � Xk
)T

φ
∣∣∣

which naively requires computing all inner products.

We note that mj can be rewitten as:

mj = max
Xk :Xj Xk /∈Mλ

∣∣∣X T
k (Xj � φ)

∣∣∣
This is (almost) a Maximum Inner product Search (MIPS) problem with query
vector Xj � φ and database or probe vectors {Xk , k ∈ J1, pK : XjXk /∈Mλ}.
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Maximum Inner Product Search

Relevant work in the data mining literature (far from exhaustive):
X State-of-the-art exact MIPS algorithm:

Christina Teflioudi and Rainer Gemulla. “Exact and Approximate Maximum Inner
Product Search with LEMP”. . In: TODS (2016)

X All pairs similarity search algorithm:

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. “Scaling up all pairs
similarity search”. In: Proc. 16th Int. Conf. World Wide Web - WWW ’07 (2007), p. 131

We borrow the idea of computing inner products on restricted sets of dimensions,
and bounding the part of the inner product on the remaining dimensions.

We implement this idea in the case of our particular setting where:
X queries are sparse vectors of the form: Xj � φ, and φ can have both positive and

negative entries.
X probes are binary vectors.
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Maximum Inner Product Search

Input: Q =
{

Xj : η(φ,Xj ) ≥ λ
}
∈ [0, 1]n×q , P ∈ [0, 1]n×p, φ ∈ Rn

Param: nc ∈ N
Output: m ∈ Rq and k ∈ Rq .
1: Reorder the dimensions 1 . . . n such that |φ| is sorted in descending order.
2: Reorder the vectors Pj in P in increasing order of nnz(Pj ).
3: Initialize the best inner products m ∈ Rq for each query.

We note Nj ⊂ J1, nK the set of non zero entries of Xj .
4: for j ∈ J1, qK do

# Compute r+ ∈ Rn and r− ∈ Rn the partial inner product upperbounds.
5: for i ∈ Nj do
6: r+i =

∑
m>i; m:φm>0

Xmjφm and r−i =
∑

m>i; m:φm<0

Xmjφm

7: for k ∈ J1, pK do
8: d = 0 (inner product initialization); c = 0 (counter initialization);
9: for i ∈ Nj do

10: d = d + Qij Pikφi ; c = c + 1.
11: if c mod nc == 0 then
12: if (d + r+i ) < min(mj , λ) and

∣∣∣(d + r−i )
∣∣∣ < min(mj , λ) then go to next probe.

13: if mj < d < λ then set mj = d and kj = k
14: if d ≥ λ then add Xj Xk toMλ
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Recap

We propose WHInter:
X Working set strategy.
X New branch pruning strategy for the identification of the active set.
X Efficient computation of branch bounds using a Maximum Inner Product Search (MIPS)

framework for binary data.

Evaluation of WHInter on:
X Simulated datasets.
X Real toxicogenetics dataset.
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LASSO Simulations

We simulate X ∈ J0, 1Kn×p where Xik ∼ Bernoulli (qk ), and qk ∼ Unif (0.1, 0.5) for
different combinations of n and p.

We randomly pick a set S of 100 features (among original and interaction ones).

The associated weights are drawn from a standard gaussian distribution.

We set φ = ZSw
We choose 100 values of λ logarithmically spaced in [λmax , 0.01λmax ]. We stop the
algirithm as soon as more than 150 features are selected in the model.
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LASSO Simulations

n = 1000 fixed, p varied.
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LASSO Simulations

n = 1000, p = 10000.
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Results on Dream 8 toxicogenetics data

We consider the SNPs from chromosomes 1 and 19 of 620 lymphoblastoid cell
lines, represented by X 1 ∈ J0, 1K620×102196 and X 19 ∈ J0, 1K620×28418.

The response y ∈ R620 is the cytotoxicity (EC10) of a chemical compound.

Correction for population structure was applied as in Price et al (2006).

Chromosome 19 Chromosome 1
Method Preproc Path Tot. time Preproc Path Tot. time

(min) (min) (min) (h) (h) (h)
η(αl2) + MIPS 13 13 26 2.5 1.4 3.9
η(α∗) + MIPS 13 13 26 2.5 1.2 3.7
η(α = 1) + MIPS 13 22 35 2.5 2.9 5.4
η(αl2) + naive 13 23 36 2.5 2.5 5
ζ + MIPS 7 84 91 1.2 13.5 14.7
ζ + naive 7 109 116 1.2 17.2 18.4
SPP 7 173 180 1.2 25.2 26.4
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Thank you for your attention.
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