Scaling up the LASSO with interaction features

Marine Le Morvan Joint work with Jean-Philippe Vert

CBIO - Mines Paristech, INSERM U900 - Curie institute, Paris, France

November 7th, 2017

DNA sequences

Response to treatment? Disease risk? Drug assimilation rate? Ancestry?

. . .

DNA sequences

Response to treatment? Disease risk? Drug assimilation rate? Ancestry?

. . .

DNA sequences

Single Nucleotide Polyphormisms (SNPs)

. . .

Response to treatment? Disease risk? Drug assimilation rate? Ancestry?

DNA sequences

	<i>s</i> ₁ –	$ s_2$	$ s_3$	$ S_4$	$-s_{5}$	 y
$P_1 \ldots$	1	0	1	0	0	 1
$P_2 \ldots$	0	1	0	0	0	 X
$P_3 \ldots$	1	0	1	0	0	 X
$P_4 \ldots$	0	0	0	0	0	 1
<i>P</i> ₅	0	0	0	0	0	 1
$P_6 \ldots$	1	1	0	1	1	 X
P_7	1	1	1	1	1	 X
<i>P</i> ₈	0	1	0	0	1	 1
	↑	\uparrow	\uparrow	↑	\uparrow	

Single Nucleotide Polyphormisms (SNPs)

Query Orug assimilation rate? Ancestry?

. . .

Motivating example

The LASSO is commonly used to predict y:

The penalty forces only a few features to be selected in the model, for ex:

$$y = w_1^* X_{s_1} + w_4^* X_{s_4} + w_5^* X_{s_5}$$

We would like to also consider second order interaction effects of the form:

$$\boldsymbol{X}_{j} \odot \boldsymbol{X}_{k}, \quad (j,k) \in \llbracket 1, p
rbracket^{2}$$

where \odot is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

$$y = w_1^* X_{s_1} + w_4^* X_{s_4} + w_5^* X_{s_5} + w_{1,2}^* X_{s_1} \odot X_{s_2}$$

We would like to also consider second order interaction effects of the form:

$$\boldsymbol{X}_{j} \odot \boldsymbol{X}_{k}, \quad (j,k) \in \llbracket 1, p
bracket^{2}$$

where \odot is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

$$y = w_1^* X_{s_1} + w_4^* X_{s_4} + w_5^* X_{s_5} + w_{1,2}^* X_{s_1} \odot X_{s_2}$$

Why is it interesting?

Marine Le Morvan (Mines Paristech)

We would like to also consider second order interaction effects of the form:

$$\boldsymbol{X}_{j} \odot \boldsymbol{X}_{k}, \quad (j,k) \in \llbracket 1, p
rbracket^{2}$$

where \odot is the Hadamard product (=entrywise product).

Typically, we would like to be able to learn a model such as:

$$y = w_1^* X_{s_1} + w_4^* X_{s_4} + w_5^* X_{s_5} + w_{1,2}^* X_{s_1} \odot X_{s_2}$$

Why is it difficult?

The number of interactions terms is equal to:

$$D=\frac{p(p-1)}{2}$$

If p = 100.000, then $D = 5 \times 10^9$. Classical LASSO solvers will be too slow.

This work aims at providing a framework to fit sparse linear models with second order interaction terms when the data is binary.

Problem formulation

• We will indifferently use $X_j \odot X_k$ and $X_j X_k$.

Primal problem

$$\min_{(\boldsymbol{w},b)\in\mathbb{R}^D\times\mathbb{R}}g_{\lambda}(\boldsymbol{w},b) = \frac{1}{n}\|\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{w} - b\|_2^2 + \lambda \|\boldsymbol{w}\|_1$$
(1)

Dual problem

$$\max_{\boldsymbol{\theta}\in\mathbb{R}^n} f_{\lambda}(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{y}\|_2^2 - \frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{y}\|_2^2 \text{ s.t. } \begin{cases} |(\boldsymbol{X}_j \boldsymbol{X}_k)^T \boldsymbol{\theta}| \le \lambda & (j,k) \in [\![1,p]\!]^2 \\ \mathbf{1}^T \boldsymbol{\theta} = \mathbf{0} \end{cases}$$
(2)

- Safe Pattern Pruning (SPP) (Nakagawa et al., 2016)
- SPP relies on safe screening rules. Given primal and dual feasible solutions, safe screening rules identify features which are guaranteed not be active at the optimum.
- The idea of SPP is to leverage **the tree structure of interactions features**, and propose a screening rule applicable to entire branches.

WHInter

• Limitations:

- \checkmark SPP does not allow to prune enough branches, especially when *n* increases.
- \checkmark The size of the safe set can be big (for medium values of λ)
- A dual feasible point is expensive to compute.

• We propose WHInter:

- ✓ Working set strategy.
- ✓ New branch pruning strategy for the identification of the active set.
- Efficient computation of branch bounds using a Maximum Inner Product Search (MIPS) framework for binary data.

WHInter achieves a speed ups of up to one order of magnitude compared to SPP.

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Initialize \mathcal{M}_{λ} .

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Initialize \mathcal{M}_{λ} . Pre-solve and initialize ϕ .

$$\boldsymbol{w}, \boldsymbol{b} \leftarrow \operatorname*{argmin}_{(\boldsymbol{w}, \boldsymbol{b}) \in \mathbb{R}^{D} \times \mathbb{R}} \frac{1}{n} \| \boldsymbol{y} - \boldsymbol{Z}_{\mathcal{M}_{\lambda}} \boldsymbol{w} - \boldsymbol{b} \|_{2}^{2} + \lambda \| \boldsymbol{w} \|_{1}$$
$$\boldsymbol{\phi} \leftarrow \boldsymbol{y} - \boldsymbol{Z}_{\mathcal{M}_{\lambda}} \boldsymbol{w} - \boldsymbol{b}$$

Problem formulation

• The KKT conditions state that:

$$\forall (j,k) \in \llbracket 1, p \rrbracket^2, \quad \left| (\boldsymbol{X}_j \boldsymbol{X}_k)^T \boldsymbol{\theta}^* \right| \in \begin{cases} \{\lambda\} \text{ if } \boldsymbol{w}_{j,k}^* \neq 0\\ [-\lambda, \lambda] \text{ if } \boldsymbol{w}_{j,k}^* = 0 \end{cases}$$
(3)

We will say that the constraint relative to $X_j X_k$ is violated whenever $|(X_j X_k)^T \theta| > \lambda$

• The primal and dual optimal variables (w*, b*) and θ * are related as follows:

$$\boldsymbol{\theta}^* = \boldsymbol{y} - \boldsymbol{Z} \boldsymbol{w}^* - \boldsymbol{b}^*$$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$. We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

If $\eta(\phi, \mathbf{X}_i) \leq \lambda$, then we know that all features in the branch respect the optimality conditions.

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$.

We define $\eta(\phi, X_j)$ as an upper bound on

$$\max_{\boldsymbol{X}_k:\,\boldsymbol{X}_j\boldsymbol{X}_k\notin\mathcal{M}_\lambda}\Big|\big(\boldsymbol{X}_j\boldsymbol{X}_k\big)^{\mathsf{T}}\,\boldsymbol{\phi}\Big|.$$

$$\eta(\phi, X_1) < \lambda$$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$.

We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

$$\eta(\phi, X_1) < \lambda$$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$.

We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

$$\eta(\phi, X_2) \geq \lambda$$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, X_i)$. We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

$\eta(\phi, X_3) \geq \lambda$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$.

We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

$$\eta(\phi, X_4) < \lambda$$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, \mathbf{X}_j)$.

We define $\eta(\phi, \mathbf{X}_j)$ as an upper bound on $\max_{\mathbf{X}_k: \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda} | (\mathbf{X}_j \mathbf{X}_k)^T \phi|$.

$$\eta(\phi, X_4) < \lambda$$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. Compute the bound $\eta(\phi, X_i)$. We define $\eta(\phi, \mathbf{X}_i)$ as an upper bound on ma $\boldsymbol{X}_k : \boldsymbol{X}_j \boldsymbol{X}_k$

$$\sup_{\substack{\substack{d \in \mathcal{M}_{\lambda}}}} \left| \left(\boldsymbol{X}_{j} \boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|.$$

done

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{\mathsf{T}} \boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{t} \boldsymbol{\phi} \right| \geq \lambda \right\}$$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k}\right)^{T}\boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k}\right)^{t}\boldsymbol{\phi} \right| \geq \lambda \right\}$$

 $\left| (\boldsymbol{X}_{2} \boldsymbol{X}_{3})^{T} \boldsymbol{\phi} \right| \geq \lambda$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{t} \boldsymbol{\phi} \right| \geq \lambda \right\}$$

 $\left| (\boldsymbol{X}_{2} \boldsymbol{X}_{3})^{T} \boldsymbol{\phi} \right| \geq \lambda$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{t} \boldsymbol{\phi} \right| \geq \lambda \right\}$$

 $\left| \left(\boldsymbol{X}_{2} \boldsymbol{X}_{4} \right)^{T} \boldsymbol{\phi} \right| < \lambda$

Input: $\boldsymbol{X} \in [\![0,1]\!]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{t} \boldsymbol{\phi} \right| \geq \lambda \right\}$$

 $\left| \left(\boldsymbol{X}_{3} \boldsymbol{X}_{1} \right)^{T} \boldsymbol{\phi} \right| < \lambda$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k}\right)^{T}\boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k}\right)^{t}\boldsymbol{\phi} \right| \geq \lambda \right\}$$

 $\left| \left(\boldsymbol{X}_{3} \boldsymbol{X}_{4} \right)^{T} \boldsymbol{\phi} \right| < \lambda$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Identify violated constraints and update working set. If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}:\,\boldsymbol{X}_{j}\boldsymbol{X}_{k}\notin\mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|, \quad \mathcal{M}_{\lambda} \leftarrow \mathcal{M}_{\lambda} \cup \left\{ \boldsymbol{X}_{j}\boldsymbol{X}_{k}: \left| \left(\boldsymbol{X}_{j}\boldsymbol{X}_{k} \right)^{t} \boldsymbol{\phi} \right| \geq \lambda \right\}$$

done

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

Solve subproblem restricted to \mathcal{M}_λ Update residuals

$$\boldsymbol{w}, \boldsymbol{b} \leftarrow \operatorname*{argmin}_{(\boldsymbol{w}, \boldsymbol{b}) \in \mathbb{R}^{D} \times \mathbb{R}} \frac{1}{n} \| \boldsymbol{y} - \boldsymbol{Z}_{\mathcal{M}_{\lambda}} \boldsymbol{w} - \boldsymbol{b} \|_{2}^{2} + \lambda \| \boldsymbol{w} \|_{1}$$
$$\boldsymbol{\phi} \leftarrow \boldsymbol{y} - \boldsymbol{Z}_{\mathcal{M}_{\lambda}} \boldsymbol{w} - \boldsymbol{b}$$

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

- 1: Initialize \mathcal{M}_{λ} . Pre-solve and initialize ϕ .
- 2: repeat:
- 3: **for** each branch *j* **do**:

- 4: Compute the bound $\eta(\phi, \mathbf{X}_j)$.
- 5: If $\eta(\dot{\phi}, X_j) \ge \lambda$, compute $m_j(\phi)$ and update \mathcal{M}_{λ} .
- 6: Solve subproblem
- 7: until no violated constraint remains.

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

- 1: Initialize \mathcal{M}_{λ} . Pre-solve and initialize ϕ .
- 2: repeat:
- 3: **for** each branch *j* **do**:

- 4: Compute the bound $\eta(\phi, X_j)$.
- 5: If $\eta(\dot{\phi}, X_j) \ge \lambda$, compute $m_j(\phi)$ and update \mathcal{M}_{λ} .
- 6: Solve subproblem
- 7: until no violated constraint remains.

Input: $\boldsymbol{X} \in [0, 1]^{n \times p}, \quad \boldsymbol{y} \in \mathbb{R}^n$

- 1: Initialize \mathcal{M}_{λ} . Pre-solve and initialize ϕ .
- 2: repeat:
- 3: **for** each branch *j* **do**:

- 4: Compute the bound $\eta(\phi, X_j)$.
- 5: If $\eta(\dot{\phi}, X_j) \ge \lambda$, compute $m_j(\phi)$ and update \mathcal{M}_{λ} .
- 6: Solve subproblem
- 7: until no violated constraint remains.

• Suppose the current residual is ϕ . For each branch $j \in [\![1, p]\!]$, we want a bound $\eta(\phi, \mathbf{X}_j)$ such that:

$$\boldsymbol{m}_{j}(\boldsymbol{\phi}) = \max_{\boldsymbol{X}_{k}: \, \boldsymbol{X}_{j} \boldsymbol{X}_{k} \notin \mathcal{M}_{\lambda}} \left| (\boldsymbol{X}_{j} \boldsymbol{X}_{k})^{T} \boldsymbol{\phi} \right| \leq \eta(\boldsymbol{\phi}, \boldsymbol{X}_{j})$$

• One possibility is to use the following bound (as in Nakagawa et al.):

$$\begin{split} \boldsymbol{m}_{j}(\boldsymbol{\phi}) &\leq \max_{\boldsymbol{x} \in [0,1]^{n}} \left| \left(\boldsymbol{X}_{j} \odot \boldsymbol{x} \right)^{T} \boldsymbol{\phi} \right| \\ &= \max \left(\sum_{i: \phi_{i} > 0} \boldsymbol{X}_{ij} \phi_{i}, -\sum_{i: \phi_{i} < 0} \boldsymbol{X}_{ij} \phi_{i} \right) \\ &= \zeta(\boldsymbol{\phi}, \boldsymbol{X}_{j}) \end{split}$$

- ✓ can be computed very efficiently.
- \checkmark but becomes too loose when *n* increases, leading to only few branches pruned.

Branch Bounds

• Suppose the current residual is ϕ . Suppose we have already computed $m_j(\phi^{prev}) = \max_{\boldsymbol{X}_k: \, \boldsymbol{X}_j \boldsymbol{X}_k \notin \mathcal{M}_\lambda} \left| (\boldsymbol{X}_j \boldsymbol{X}_k)^T \phi^{prev} \right|$ We propose the following bound:

$$\begin{split} \boldsymbol{m}_{j}(\phi) &= \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \phi \right| \\ &= \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \phi^{prev} + \boldsymbol{x}^{T} \left(\phi - \phi^{prev} \right) \right| \\ &\leq \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \phi^{prev} \right| + \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \left(\phi - \phi^{prev} \right) \right| \\ &\leq \boldsymbol{m}_{j}(\phi_{prev}) + \max_{\boldsymbol{x} \in [0,1]^{n}} \left| (\boldsymbol{X}_{j} \odot \boldsymbol{x})^{T} \left(\phi - \phi^{prev} \right) \right| \\ &= \boldsymbol{m}_{j}(\phi_{prev}) + \max \left(\sum_{i:\phi_{i} > \phi_{i}^{prev}} \boldsymbol{X}_{ij} \left(\phi_{i} - \phi_{i}^{prev} \right), - \sum_{i:\phi_{i} < \phi_{i}^{prev}} \boldsymbol{X}_{ij} \left(\phi_{i} - \phi_{i}^{prev} \right) \right) \\ &= \eta(\phi, \boldsymbol{X}_{j}) \end{split}$$

• We leverage previously computed maximum inner products and the fact that residuals along the regularization path are correlated.

Marine Le Morvan (Mines Paristech)

Scaling up the LASSO with interaction features

Branch Bounds

• Suppose the current residual is ϕ . Suppose we have already computed $\boldsymbol{m}_{j}(\phi^{\text{prev}}) = \max_{\boldsymbol{X}_{k}: \boldsymbol{X}_{j} \boldsymbol{X}_{k} \notin \mathcal{M}_{\lambda}} \left| (\boldsymbol{X}_{j} \boldsymbol{X}_{k})^{T} \phi^{\text{prev}} \right|$ We propose the following bound:

$$\begin{split} \boldsymbol{m}_{j}(\phi) &= \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \phi \right| \\ &= \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \alpha \boldsymbol{x}^{T} \phi^{prev} + \boldsymbol{x}^{T} \left(\phi - \alpha \phi^{prev} \right) \right| \\ &\leq \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \alpha \right| \left| \boldsymbol{x}^{T} \phi^{prev} \right| + \max_{\boldsymbol{x} \in \mathcal{D}e(\boldsymbol{X}_{j})} \left| \boldsymbol{x}^{T} \left(\phi - \alpha \phi^{prev} \right) \right| \\ &\leq \left| \alpha \right| \boldsymbol{m}_{j}(\phi_{prev}) + \max_{\boldsymbol{x} \in \llbracket 0,1 \rrbracket^{n}} \left| \left(\boldsymbol{X}_{j} \odot \boldsymbol{x} \right)^{T} \left(\phi - \alpha \phi^{prev} \right) \right| \\ &= \left| \alpha \right| \boldsymbol{m}_{j}(\phi_{prev}) + \max \left(\sum_{i: \phi_{i} > \alpha \phi^{prev}_{i}} \boldsymbol{X}_{ij} \left(\phi_{i} - \alpha \phi^{prev}_{i} \right), - \sum_{i: \phi_{i} < \alpha \phi^{prev}_{i}} \boldsymbol{X}_{ij} \left(\phi_{i} - \alpha \phi^{prev}_{i} \right) \right) \\ &= \eta(\phi, \boldsymbol{X}_{j}, \alpha) \end{split}$$

• We leverage previously computed maximum inner products and the fact that residuals along the regularization path are correlated.

Marine Le Morvan (Mines Paristech)

Scaling up the LASSO with interaction features

$$\eta(\phi, \mathbf{X}_{j}, \alpha) = |\alpha| \mathbf{m}_{j} + max \left(\sum_{i:\phi_{i} > \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right), - \sum_{i:\phi_{i} < \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right) \right)$$

1

$$\eta(\phi, \mathbf{X}_{j}, \alpha) = |\alpha| \mathbf{m}_{j} + max \left(\sum_{i:\phi_{i} > \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right), - \sum_{i:\phi_{i} < \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right) \right)$$

$$\eta(\phi, \mathbf{X}_{j}, \alpha) = |\alpha| \mathbf{m}_{j} + max \left(\sum_{i:\phi_{i} > \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right), - \sum_{i:\phi_{i} < \alpha \phi_{i}^{\textit{prev}}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{\textit{prev}}\right) \right)$$

Branch Bounds: Optimisation

$$\eta(\phi, \mathbf{X}_{j}, \alpha) = |\alpha| \mathbf{m}_{j} + \max\left(\sum_{i:\phi_{i} > \alpha \phi_{i}^{prev}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{prev}\right), -\sum_{i:\phi_{i} < \alpha \phi_{i}^{prev}} \mathbf{X}_{ij} \left(\phi_{i} - \alpha \phi_{i}^{prev}\right)\right)$$

How to choose α ?

- Option 1: $\alpha^* = \operatorname*{argmin}_{\alpha \in \mathbb{R}} \eta(\phi, X_j, \alpha)$
 - $\checkmark \eta$ is a piecewise continuous function which is convex in α .
 - $\checkmark \eta$ can be minimized in $\mathcal{O}(n_j \log n_j)$ operations.

• Option 2: $\alpha_{\ell 2} = \frac{\phi^T \phi^{prev}}{\|\phi^{prev}\|_2^2}$

- $\checkmark \alpha_{\ell 2}$ minimizes $\|\phi \alpha \phi^{\text{prev}}\|_2^2$.
- $\checkmark \alpha_{\ell 2}$ can be obtained in $\mathcal{O}(n_j)$ operations.

- 1: Initialize \mathcal{M}_{λ}
- 2: repeat:
- 3: **for** each branch *j* **do**:

- 4: Compute the bound $\eta(\phi, X_j)$.
- 5: If $\eta(\phi, \mathbf{X}_j) \ge \lambda$, compute $\mathbf{m}_j(\phi)$ and update \mathcal{M}_{λ} .
- 6: Solve subproblem
- 7: until no violated constraint remains.

- 1: Initialize \mathcal{M}_{λ}
- 2: repeat:
- 3: **for** each branch *j* **do**:

- 4: Compute the bound $\eta(\phi, X_j)$.
- 5: If $\eta(\phi, X_j) \ge \lambda$, compute $m_j(\phi)$ and update \mathcal{M}_{λ} .
- 6: Solve subproblem
- 7: until no violated constraint remains.

- Whenever $\eta(\phi, \mathbf{X}_j, \alpha^*) \ge \lambda$, then there is a chance that branch *j* contains a feature which is violated for the current residual ϕ . In this case we need to:
 - ✓ identify all violated features.
 - ✓ compute:

$$\boldsymbol{m}_{j} = \max_{\boldsymbol{X}_{k}: \boldsymbol{X}_{j} \boldsymbol{X}_{k} \notin \mathcal{M}_{\lambda}} \left| \left(\boldsymbol{X}_{j} \odot \boldsymbol{X}_{k} \right)^{T} \boldsymbol{\phi} \right|$$

which naively requires computing all inner products.

• We note that **m**_i can be rewitten as:

$$\boldsymbol{m}_{j} = \max_{\boldsymbol{X}_{k}: \boldsymbol{X}_{j} \boldsymbol{X}_{k} \notin \mathcal{M}_{\lambda}} \left| \boldsymbol{X}_{k}^{\mathsf{T}} \left(\boldsymbol{X}_{j} \odot \boldsymbol{\phi} \right) \right|$$

This is (almost) a Maximum Inner product Search (MIPS) problem with query vector $\mathbf{X}_j \odot \phi$ and database or probe vectors $\{\mathbf{X}_k, k \in [\![1, p]\!] : \mathbf{X}_j \mathbf{X}_k \notin \mathcal{M}_\lambda\}$.

- Relevant work in the data mining literature (far from exhaustive):
 - ✓ State-of-the-art exact MIPS algorithm:
 - Christina Teflioudi and Rainer Gemulla. "Exact and Approximate Maximum Inner Product Search with LEMP". . In: TODS (2016)
 - ✓ All pairs similarity search algorithm:

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. "Scaling up all pairs similarity search". In: Proc. 16th Int. Conf. World Wide Web - WWW '07 (2007), p. 131

- We borrow the idea of computing inner products on restricted sets of dimensions, and bounding the part of the inner product on the remaining dimensions.
- We implement this idea in the case of our particular setting where:
 - ✓ queries are sparse vectors of the form: $X_j \odot \phi$, and ϕ can have both positive and negative entries.
 - ✓ probes are binary vectors.

Input: $\boldsymbol{Q} = \{\boldsymbol{X}_j : \eta(\phi, \boldsymbol{X}_j) \ge \lambda\} \in [0, 1]^{n \times q}, \quad \boldsymbol{P} \in [0, 1]^{n \times p}, \quad \phi \in \mathbb{R}^n$

Param: $n_c \in \mathbb{N}$

Output: $m \in \mathbb{R}^q$ and $k \in \mathbb{R}^q$.

- 1: Reorder the dimensions $1 \dots n$ such that $|\phi|$ is sorted in descending order.
- 2: Reorder the vectors \boldsymbol{P}_j in \boldsymbol{P} in increasing order of $nnz(\boldsymbol{P}_j)$.
- 3: Initialize the best inner products $\pmb{m} \in \mathbb{R}^q$ for each query.

We note $\mathcal{N}_j \subset \llbracket 1, n \rrbracket$ the set of non zero entries of X_j .

- 4: for $j \in [\![1, q]\!]$ do # Compute $r^+ \in \mathbb{R}^n$ and $r^- \in \mathbb{R}^n$ the partial inner product upperbour
 - 5: for $i \in \mathcal{N}_i$ do

6:
$$\mathbf{r}_i^+ = \sum_{m>i; m:\phi_m>0} \mathbf{X}_{mj} \phi_m$$
 and $\mathbf{r}_i^- = \sum_{m>i; m:\phi_m<0} \mathbf{X}_{mj} \phi_m$

7: **for** $k \in [\![1, p]\!]$ **do**

8: d = 0 (inner product initialization); c = 0 (counter initialization);

9: for $i \in \mathcal{N}_i$ do

10:
$$d = d + \mathbf{Q}_{ij}\mathbf{P}_{ik}\phi_i; \quad c = c+1.$$

- 11: **if** *c* mod *n_c* == 0 **then**
- 12: if $(d + r_i^+) < \min(m_i, \lambda)$ and $|(d + r_i^-)| < \min(m_j, \lambda)$ then go to next probe.
- 13: if $m_j < d < \lambda$ then set $m_j = d$ and $k_j = k$
- 14: **if** $d \ge \lambda$ **then** add $X_j X_k$ to \mathcal{M}_λ

Input: $\boldsymbol{Q} = \{\boldsymbol{X}_j : \eta(\phi, \boldsymbol{X}_j) \ge \lambda\} \in [0, 1]^{n \times q}, \quad \boldsymbol{P} \in [0, 1]^{n \times p}, \quad \phi \in \mathbb{R}^n$

Param: $n_c \in \mathbb{N}$

Output: $m \in \mathbb{R}^q$ and $k \in \mathbb{R}^q$.

- 1: Reorder the dimensions $1 \dots n$ such that $|\phi|$ is sorted in descending order.
- 2: Reorder the vectors \boldsymbol{P}_j in \boldsymbol{P} in increasing order of $nnz(\boldsymbol{P}_j)$.
- 3: Initialize the best inner products $\boldsymbol{m} \in \mathbb{R}^q$ for each query.

We note $\mathcal{N}_j \subset \llbracket 1, n \rrbracket$ the set of non zero entries of X_j .

4: for $j \in \llbracket 1, q \rrbracket$ do

Compute $\mathbf{r}^+ \in \mathbb{R}^n$ and $\mathbf{r}^- \in \mathbb{R}^n$ the partial inner product upperbounds.

5: for $i \in \mathcal{N}_j$ do

6:
$$\mathbf{r}_i^+ = \sum_{m>i; m:\phi_m>0} \mathbf{X}_{mj} \phi_m \text{ and } \mathbf{r}_i^- = \sum_{m>i; m:\phi_m<0} \mathbf{X}_{mj} \phi_m$$

7: **for** $k \in [\![1, p]\!]$ **do**

8: d = 0 (inner product initialization); c = 0 (counter initialization);

9: for $i \in \mathcal{N}_i$ do

10:
$$d = d + Q_{ij}P_{ik}\phi_i; \quad c = c + 1.$$

- 11: **if** *c* mod *n_c* == 0 **then**
- 12: if $(d + r_i^+) < \min(m_i, \lambda)$ and $|(d + r_i^-)| < \min(m_j, \lambda)$ then go to next probe.
- 13: **if** $m_j < d < \lambda$ **then** set $m_j = d$ and $k_j = k$
- 14: **if** $d \ge \lambda$ **then** add $X_j X_k$ to \mathcal{M}_λ

Input: $\boldsymbol{Q} = \{\boldsymbol{X}_j : \eta(\phi, \boldsymbol{X}_j) \ge \lambda\} \in [0, 1]^{n \times q}, \quad \boldsymbol{P} \in [0, 1]^{n \times p}, \quad \phi \in \mathbb{R}^n$

Param: $n_c \in \mathbb{N}$

Output: $m \in \mathbb{R}^q$ and $k \in \mathbb{R}^q$.

- 1: Reorder the dimensions $1 \dots n$ such that $|\phi|$ is sorted in descending order.
- 2: Reorder the vectors \boldsymbol{P}_j in \boldsymbol{P} in increasing order of $nnz(\boldsymbol{P}_j)$.
- 3: Initialize the best inner products $\boldsymbol{m} \in \mathbb{R}^q$ for each query.

We note $\mathcal{N}_j \subset \llbracket 1, n \rrbracket$ the set of non zero entries of X_j .

4: for $j \in \llbracket 1, q \rrbracket$ do

Compute $\mathbf{r}^+ \in \mathbb{R}^n$ and $\mathbf{r}^- \in \mathbb{R}^n$ the partial inner product upperbounds.

5: for $i \in \mathcal{N}_j$ do

6:
$$\mathbf{r}_i^+ = \sum_{m>i; m:\phi_m>0} \mathbf{X}_{mj} \phi_m$$
 and $\mathbf{r}_i^- = \sum_{m>i; m:\phi_m<0} \mathbf{X}_{mj} \phi_m$

- 7: for $k \in [[1, p]]$ do
- 8: d = 0 (inner product initialization); c = 0 (counter initialization);
- 9: for $i \in \mathcal{N}_i$ do

10:
$$d = d + \boldsymbol{Q}_{ij} \boldsymbol{P}_{ik} \phi_i; \quad c = c + 1.$$

- 11: if $c \mod n_c == 0$ then
- 12: if $(d + r_i^+) < \min(m_j, \lambda)$ and $|(d + r_i^-)| < \min(m_j, \lambda)$ then go to next probe.
- 13: **if** $m_j < d < \lambda$ **then** set $m_j = d$ and $k_j = k$
- 14: **if** $d \ge \lambda$ **then** add $X_i X_k$ to \mathcal{M}_{λ}

Input: $\boldsymbol{Q} = \{\boldsymbol{X}_j : \eta(\phi, \boldsymbol{X}_j) \ge \lambda\} \in [0, 1]^{n \times q}, \quad \boldsymbol{P} \in [0, 1]^{n \times p}, \quad \phi \in \mathbb{R}^n$

Param: $n_c \in \mathbb{N}$

Output: $m \in \mathbb{R}^q$ and $k \in \mathbb{R}^q$.

- 1: Reorder the dimensions $1 \dots n$ such that $|\phi|$ is sorted in descending order.
- 2: Reorder the vectors \boldsymbol{P}_j in \boldsymbol{P} in increasing order of $nnz(\boldsymbol{P}_j)$.
- 3: Initialize the best inner products $\boldsymbol{m} \in \mathbb{R}^q$ for each query.

We note $\mathcal{N}_j \subset \llbracket 1, n \rrbracket$ the set of non zero entries of X_j .

4: for $j \in \llbracket 1, q \rrbracket$ do

Compute $\mathbf{r}^+ \in \mathbb{R}^n$ and $\mathbf{r}^- \in \mathbb{R}^n$ the partial inner product upperbounds.

5: for $i \in \mathcal{N}_j$ do

6:
$$\mathbf{r}_i^+ = \sum_{m>i; m:\phi_m>0} \mathbf{X}_{mj} \phi_m$$
 and $\mathbf{r}_i^- = \sum_{m>i; m:\phi_m<0} \mathbf{X}_{mj} \phi_m$

- 7: for $k \in [[1, p]]$ do
- 8: d = 0 (inner product initialization); c = 0 (counter initialization);
- 9: for $i \in \mathcal{N}_i$ do

10:
$$d = d + \boldsymbol{Q}_{ij} \boldsymbol{P}_{ik} \phi_i; \quad c = c + 1.$$

- 11: if $c \mod n_c == 0$ then
- 12: if $(d + \mathbf{r}_i^+) < \min(\mathbf{m}_j, \lambda)$ and $|(d + \mathbf{r}_i^-)| < \min(\mathbf{m}_j, \lambda)$ then go to next probe.
- 13: if $m_j < d < \lambda$ then set $m_j = d$ and $k_j = k$
- 14: **if** $d \ge \lambda$ **then** add $X_j X_k$ to \mathcal{M}_λ

• We propose WHInter:

- ✓ Working set strategy.
- ✓ New branch pruning strategy for the identification of the active set.
- ✓ Efficient computation of branch bounds using a Maximum Inner Product Search (MIPS) framework for binary data.

• Evaluation of WHInter on:

- ✓ Simulated datasets.
- Real toxicogenetics dataset.

- We simulate X ∈ [[0, 1]]^{n×p} where X_{ik} ~ Bernoulli (q_k), and q_k ~ Unif (0.1, 0.5) for different combinations of n and p.
- We randomly pick a set S of 100 features (among original and interaction ones).
- The associated weights are drawn from a standard gaussian distribution.

• We set $\phi = \mathbf{Z}_{S} \mathbf{w}$

We choose 100 values of λ logarithmically spaced in [λ_{max}, 0.01λ_{max}]. We stop the algirithm as soon as more than 150 features are selected in the model.

LASSO Simulations

n = 1000 fixed, p varied.

LASSO Simulations

p = 1000 fixed, n varied.

LASSO Simulations

n = 1000, p = 10000.

- We consider the SNPs from chromosomes 1 and 19 of 620 lymphoblastoid cell lines, represented by X¹ ∈ [[0, 1]]^{620×102196} and X¹⁹ ∈ [[0, 1]]^{620×28418}.
- The response $y \in \mathbb{R}^{620}$ is the cytotoxicity (EC10) of a chemical compound.
- Correction for population structure was applied as in Price et al (2006).

	Chr	omosom	e 19	Chromosome 1			
Method	Preproc	Path	Tot. time	Preproc	Path	Tot. time	
	(min)	(min)	(min)	(ĥ)	(h)	(h)	
$\eta(\alpha_{l2}) + MIPS$	13	13	26	2.5	1.4	3.9	
$\eta(\alpha^*) + MIPS$	13	13	26	2.5	1.2	3.7	
$\eta(\alpha = 1) + MIPS$	13	22	35	2.5	2.9	5.4	
$\eta(\alpha_{l2}) + naive$	13	23	36	2.5	2.5	5	
$\dot{\zeta} + \dot{M}IPS$	7	84	91	1.2	13.5	14.7	
$\dot{\zeta} + naive$	7	109	116	1.2	17.2	18.4	
SPP	7	173	180	1.2	25.2	26.4	

Thank you for your attention.

- Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. "Scaling up all pairs similarity search". In: *Proc. 16th Int. Conf. World Wide Web WWW '07* (2007), p. 131.

- Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. "Mind the duality gap: safer rules for the Lasso". In: *ICML*. 2015, pp. 333–342.
- Kazuya Nakagawa et al. "Safe Pattern Pruning: An Efficient Approach for Predictive Pattern Mining". In: *KDD* (2016). arXiv: 1602.04548.
- Christina Teflioudi and Rainer Gemulla. "Exact and Approximate Maximum Inner Product Search with LEMP". In: *TODS* (2016).