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How do we deal with technical variability?

Data acquisition is often plagued with various sources of perturbations which
induce unwanted variations.

X Gene expression microarrays, RNAseq, Genotyping arrays, DNA methylation,
ChIP-Sequencing, Brain imaging, Photos, Speech...

Need to remove technical variability from noisy data.

Quantile normalisation
Quantile normalization monotonically modifies the entries of a given sample so that
after normalization, all samples have the same distribution of entries.



Standard full quantile normalization

Quantile normalisation in practice:

X Define a target quantile function (equivalently a target distribution)

f = (f1, f2, ..., fp) such that f1 ≤ f2 ≤ ... ≤ fp

X Set the smallest entry of each sample to f1
X Set the second smallest entry of each sample to f2
X ...
X Set the largest entry of each sample to fp



Standard full quantile normalization

We believe the ”true” signal should have the same distribution but is perturbed by
”unwanted variations”.



Standard full quantile normalization

⇒ QN suffers from a practical question:

How to choose the target distribution?



Standard full quantile normalization

⇒ QN suffers from a practical question:

How to choose the target distribution?

In biology, the target distribution was empirically chosen as the median of the
empirical distribution of the samples (obtained by taking the median of each k th

order statistic across samples).

Quantile normalization was originally developed for gene expression microarrays
(Bolstad et al., 2003):
X While there might be some advantages to using a common, non-data driven,

distribution with the quantile method, it seems unlikely an agreed standard could be
reached. [...]. For this reason we prefer the minimalist approach of a data based
normalization.



Learning the target distribution

X x1, . . . , xn a set of p-dimensional samples

X F ⊂ Rp the set of target functions

X f ∈ F a target function

X For x ∈ Rp, let Φf (x) ∈ Rp be the data after QN with target distribution f

Standard approaches (NSQN, NetNorM, ...)
1 Fix f arbitrarily
2 QN all samples to get Φf (x1), . . . ,Φf (xn)
3 Learn a generalized linear model (w , b) on normalized data:

min
w,b

1
n

n∑
i=1

`i

(
w>Φf (xi ) + b

)
+ λΩ(w)

SUQUAN: jointly learn f and (w , b):

min
w,b,f∈F

1
n

n∑
i=1

`i

(
w>Φf (xi ) + b

)
+ λΩ(w) + γΩ(f )



Learning the target distribution

For x ∈ Rp, let Πx ∈ Rp×p the permutation matrix of x ’s entries

x =


4.5
1.2
10.1
8.9

 Πx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 f =


0
1
3
4


Quantile normalized x with target distribution f is:

Φf (x) = Πx f

SUQUAN solves

min
w,b,f∈F

1
n

n∑
i=1

`
(

w>Πxi f + b
)

+ λΩ(w) + γΩ(f )

= min
w,b,f∈F

1
n

n∑
i=1

`
(
< wf>,Πxi > +b

)
+ λΩ(w) + γΩ(f )

A particular rank-1 matrix optimization, x is replaced by Πx



Three variants of SUQUAN

SUQUAN solves:

min
w,b,f∈F

1
n

n∑
i=1

`
(
< wf>,Πxi > +b

)
+ λΩ(w) + γΩ(f )

We consider three sets of candidate target functions F :

the set of bounded target functions:

F0 =

{
f ∈ Rp :

1
p

p∑
i=1

f 2
i ≤ 1

}
.

A caveat with F0 is that the target function may not be non-decreasing.

the set of bounded non-decreasing target functions

FBND = F0 ∩ I where I =
{

f ∈ Rp : f1 ≤ f2 ≤ . . . ≤ fp
}
.

the set of non-decreasing and smooth target functions

FSPAV =

f ∈ I :

p−1∑
j=1

(fj+1 − fj )2 ≤ 1

 .



Algorithms

We propose SUQUAN-SVD as an efficient method to approximately solve SUQUAN
when F = F0 and Ω(w) = ‖w‖2

2.

Let S(f ,w , b) = 1
n
∑n

i=1 `
(
< wf>,Πxi > +b

)
. The first-order Taylor expansion of S(f ,w , 0) at

the origin is:

If ` is the logistic loss:

S(f ,w , 0) ≈
1
2
−

1
n

n∑
i=1

yi wT Πxi f

If ` is the square loss:

S(f ,w , 0) ≈ 1−
2
n

n∑
i=1

yi wT Πxi f

Under the constraints ‖f‖2 = 1 and ‖w‖2 = 1, the first left and right singular vectors of M
minimize the first-order Taylor expansion of S(f ,w , 0).



Algorithms

SUQUAN-BND and SUQUAN-SPAV approximately solve SUQUAN when F = FBND

and F = FSPAV respectively using an alternate optimisation scheme in w and f .



Simulations

1 Fix f ∈ F to be the quantile function of the normal distribution.

2 Randomly sample w ∈ Rp from a multivariate normal distribution.

3 Simulate (Φf (X ),Y ) ∈ Rp × {−1, 1} pairs according to the model

P(Y = 1 |X = Φf (X )) =
1

1 + exp(−w>Φf (X ))
,

where Φf (X ) is a random shuffling of the entries of f .

4 Estimate w from n observations:
Ridge logistic regression on the correct data (Φf (Xi ),Yi )i=1,...,n.
Ridge logistic regression on the corrupted data (Φg(Xi ),Yi )i=1,...,n, where g is a
corrupted quantile function.
SUQUAN-BND and SUQUAN-SPAV on the corrupted data (Φg(Xi ),Yi )i=1,...,n.

5 Assess the model on an independently generated test set of 1000 samples.



Simulations

p = 1000, 100 ≤ n ≤ 2000
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Real data experiments - CIFAR10

Proof of concept on an image classification task

32 × 32 tiny color images from 10 different classes.

⇒ 45 binary classification tasks.

X 10 000 training images + 2000 test images per task

X Images were converted to grayscale and transformed into a feature vector of length
1024.



Real data experiments - CIAFR10
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Real data experiments - CIAFR10

Target quantiles for the ’airplane’ versus ’horse’ binary classification task.



Real data experiments - Breast cancer gene expression

Breast cancer prognosis from gene expression data.

Two classes of patients: those who relapsed within 6 years of diagnosis and those
who did not.

Dataset name # genes # patients # positives % positives
GSE4922 22283 225 73 0.32
GSE2990 22283 106 32 0.30
GSE2034 22283 271 104 0.38
GSE1456 22283 141 37 0.26

⇒ Binary classification task.



Real data experiments - Breast cancer gene expression
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Example of target quantiles learned for two gene expression
datasets and an arbitrary split in train/test sets.



SUQUAN summary

The target distribution of QN can be seen as a parameter to optimize.
SUQUAN boils down to

Represent each sample x by the permutation matrix Πx that represents the ranking of
its features
Learn a linear model over these matrices, with a rank-1 matrix of weights

Thank you for your attention!


